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Many Rit’}u&éiw s in applied hydrology require that the dynamics of infiltra-
1

tion be chay ized by a .\imE number of parameters. These parameters are
the coefficients of an algebraie equation representing the

, n
Parts 1 and 2 of this series (12, 13) provided a dotzwi‘wd analysis of infiltration
and part 3 (14) a general discussion of the physical significance of the ana Iytical
results, Tn @L{, present pa%z We use the preceding work as the basis for a st udy of
the availab cal) algebraic infiltration e~uations.

Thig stazeiv iy facilitated z'i" we firsh glve some utemﬂl to a new physieal
enters the subsequent developments here and
use also in later papers of this series.

BORPLIVERY

It is evident from equation (38) of part 1 (12) that the most Important single

o

quantity governing infiltration at small tis / - It is equally apparent that, for ¢
)

sufliciently large, the dominant quantity is Ky [ef. equation (27) of part 2 (13)].

o~

'The physical significance of X is clear, butadditional romarks on are required.

¢
When [ is discussed alone, rather than, for example, as a member of the se-

quence [ s ! ; efe. it will be denoted by the more convenient symbol S, For

any medium subject to conditions (20) of part 1 (12) S is clearly a function of f
and 6, .

Terminolagy

Since S s 2 measure of ne capillary uptake or removal of « water, it is essentially
& property of the medium m’ah ome resemblance o permeab ility. “Absorp-
tivity™ (9) would be a suitable name for S quite comparable to “permeability”’
or “conductivity.” Since, E“owm*e;, a term embracing both absorption and
desorption is desi ired, it i3 proposed fo use the more general “sorptivity.” Al-

zém«ﬂi {Ew‘s rather extends the meaning of the “sorption” of MceBain (&), the
ranted and not oy *bnmow;

u’}

xtensi SCCmS Wy

rom the Lem sion of Plant Industry, Deniliquin, New South Fales,
he more important symbols used in Lhis series are given in an earlier

baper (1 ?}
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258 THREORY OF INFILTRATION: 4

Units and dimensions

Now for absorption into a horizontal eolumn [equatiod (9) subject to conditions
(10} of part 1 (12)]

ot

v =5 "

80 that when v is in cm. see. ™ and ¢ in sec., the practical unit of S is em. sec. V2,

We write the equation for horizontal movement in a fundamoental form
4

appropriate to liquids which do net renct with the medium and have contact
angle /1 at the lquid-solid-air line of contact:

f?jg = .?, (3:9: " D 01)) (2}
di dx 1 Jdx

where o and p are respectively the surface tension and viscosity of the liquid, The
new diffusivity, ©, is a function of the medium geometry, but is independent of
the properties of the liquid. It might be termed the intrinsic d7 fusivity, though it
is notable that its dimeunsions are those of (length) in contrast to the dimensions
of classical diffusivity, (length)?(timne)—1.

D is, of course, connected with D through the relation

o = M (3)
o cos H

The fundamental form of solution (1) is now found ¢

Vg = éi (Oﬂfc)%f?f\ ({}
ut /’

wheve the new sorptivity § is the intrinsic sorplirity of the medium, and, like the
of the geometry of the

m
ol
C./

+

wtially an expression

intrinsic permeability (75}, is os
medium,
8 iz related to S by the equation

A 1/2 )
(ar ¢o3 [z’) S )

Dimensional analysis shows that the dimensions of § are {le wth“i"?. It
intercsting to compare this result with the dimensions of intrinsis permenhilip
(length)®,

The author is grateful to a Soil Science reviewer for drawing his atteniion to a
paper by Swart /é/mimbm' et al. (1 6) W}m previously gave some attention to
these matters. The “square root of time proportionality constant” or “c cantllary
absorption coefficient” C of Swartze mm‘b“; et al. is equul to (60)V* § in the
present notation. These authors used an idealized capillary tube model of the
soil which led them to the conclusion that their € varied as the square roob of
t’mz “capillary radius,” while the hydraulic conductivity varied as the square of
the same quantity.

1% ‘ml I'be noted that the prezent developments provide a very wide geuceraliza-
tion of this result of Swartzendruber ¢t of. We have shown simv {with their
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“capillary radius” replaced by a length characteristic of the medivia) this is
valid for perfectly general medium geometry and, further, for any (non-reactive)
[E7Poe SRy

2arioave,

-ALGEBRAIC INFILTRATION EQUATIONS

We now proceed to relate the various available infiltration equations to the
analysis developed in this series. Final Iy, the goodness of fit of each equation to
the analytical result will be tested.

T'he Horton equation
Horton (4) proposed the equation

vy = vy {Uz' — 9}’)8‘5; (5)

4

where v, is the presumed “Initial” value of vo and vy is the presumed “final”
'&Eue. is a constunt. Gardner and Widtsce (3) previously proposed a similar
equation for the time-dependence of the advance of the “wet front.” The two
equations are equivalent if the mean moisture content behind the “wet front”’ is
assumed constant (10).

Relating equation (6) to the present analysis,

== z{o (i’y)

and v, is md@ain"ﬂly reat. No physical meaning can be assigned to 8.
The integral form of equation (&) is:

"

i =0 S Gc= ) - e ®

The main pe m‘}‘i avor of this fo niuﬁ rtion is that o..lim » is non-zero. Dis-
advantages inel f* he fact that it is incapable of adequately representing the
wpid deerease of vy from very high values dt small ¢, and the need for three
parameters. One mis Et expeet that, for a particular soil, the longer the time
range, the better equation Wuaid leseribe infiltration.

The Kostialov equation

E akov (G) used an equation expressing v as a (negative) power function of
t. It is convenient here to write this equation in the form
-1
v = cxl” (9

where « and « are parameters. The in itegral form of equation (9) is
7 o= k" (7o)

and was developed independent ly by Lewis (7) and has been used by others,
for example, (2) and (17).
Relating these equations to the present analysis we see that

inthe limit as {0, & = 14, x = §
in tf;;} limitast{—o, o = 1, 5 = Ko

(11)

w1 bty

'
L4
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Since the parameters in equation (9) must be constant for the equation to be
useful, it is clear that ifs scope is rather limited. The actual value of @ obtained
when the eq am;an is fitted to data will clearly depend on the range of ¢; also,
the physical siz {ICQH{‘{‘ of x depends direc! l} on e and therefore indirectly on the
range of £. For a common time range, « will be closer to L4 for fino-textured and
mitially dry soils in which the capillary ;}f*:é@mvd gradientis tend to be relatively
more important than the g witational potential gradients; for web and sandy
soils in which gravity becomes mmmf»m more rapid 1

by o will be clozer to 1.
Again the physical significance of « is obscure and wili vary with the a-value.
(We here refer only to homogeneous soils. Obvi ously if an impermeable horizon
inderlies a more permeable superficial horizon, e may fall well below the limit of
14 implied in this diseussion.)
Jespite theso difficulties, the Kostiakov equation has the advantage of
simplicity and does describe mmltras ion at the lower end of the time st’a'fe quite
well. Biuce for e < 1 (which is generally the case) g,,,wha\ 75 = 0, one cxpects that
equation (9), will become less accurate as { increases.
ICostinkov met this limitation by stipulating (in the preser t ayy "mk} that
equation (9} holds only fur vy > Ko and that forf > (ax/Ko)"* 9y = K, . This
procedure presupposes a knowledge of Ky and is therefore not follc swed in the
subsequent test of this gqazmon.

A recent equation based on o physical model

=

Fecently the writer (10) proposed® a sim plified physical model of infiliration
Y { PLof P
which led to the equation

t= Y[t — Zlog (1 + i/2)] (12)
where ¥ and Z are constants which we discuss further. Van Duin (1) has sub-

sequent 13 vorl d with the same equation.
‘2" hen this m@dei was reviewed in the light of the present analysis, 16w
that equation (12) would hold exactly for a soil for which the d;' Fusivit
tion D may be represented by the limit as ¢ — 0 of the function A(9) defined by

A0) = 80 — 0,)/2¢; 6, > § > (8, — €))
A(6) = O; (O~ € >0>0,.f

-

that is,

where 8 is the Dirac delta funetion {8) and ¢/ b — 0).

s ¥ oand Z

i Z
Relating equation (72) to this limiting ca 188, we Lm{% that coelt
become:

Y = 1/Ky; 2 = 8¢/2K, ‘ (15)

erdn follow -
i’ Emtn oocur

confusing, The neces:
3 St fw' o’ Ma
P and 49 hhuu?d read ¢

ITIRT]

in mi«rm‘in‘ts in referenco ’1@}
i whion (7) read cver
twice and each time “27 should read
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iz the case where the mediom is perfectly general, ¥ and 7 may be evaluated
auding the right-hand side of equation (72) as a power series in 4, and then
v from it the binomial series for £72 as o power series in ¢, These series ave
employed in equation (40) of part 1 (12) and the ceeflicients of 7 (unity)
and ¥ {zero} equated on both sides. This gives

A e 5 (16)
3£Kn+-[]

9 ,
L-sﬁ 5. U7

f’oz such extreme variation from the ideal case where equation (12) holds
‘olo lig h% clay of the numerieal emnspk developed in parts 1 and 2 (12,

33 fi- and right-hand sides of equation u"/) are at least of the same order
of magpitude, being 4.7 X 167 %cem. sm,”‘ and 8.1 X 10~% em. see. ™, respectively.

Thes squa h{m (17) should be very roughly true f@z’ all eonceiva b}e media and
sheald give the order of magnitude of f

c»;b{*: "»“«'peci‘ m’;az:si ion (12} to describe ﬁnﬁitraéiion with a fair degree of
zlngw of £. The error will be least {or sandy and
I approa ch the ideal shape which makes equation

An eyuation based on the present analysis
VA *fi to handlesinee £ is the dependent variable. A simpler
1! significance is
7 = S 4 A (18)

equation (89) of part 1 (12) with only the
i erms of tbe series retained and with

&+f:A (19)

The differential form of equation (J8) is

vg = LESEYE A A (20}
rvery large ¢
vy == g (21)
nd (273 would agree if A = K, bub this is not so. Semni-
of reconciling thes exgu:‘-i;’lfms; at large ¢ can be developed;
7

rinvolve at least one extra parameter Ky and need ot concern

Ay B0 O N P N | iy
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Lquation ("5)3 then, 15 a very simple equation, based on physical the

:ory, which
should be aceurate for all bus very large ¢, Its advantages ave such that its use in

applied hydrologic studies would seen: desirable

Tests of the various infillration equations

Values of 7 at ¢ = 1000 and ¢ = 19 000 determined from our numerical ox-
aruple of infiltration into Yolo light elay [sec parts 1 and 2 (12, 13)], were used as
the basis of extrapolation as far as ¢ = 100 ;000 by the four available infiltvation
equations. The Horton equation employs three parameters, so, in this instance . a
third point (¢ = 5500) was also used. This test gave an indication of the re-
La?nhhf of the equ%tiun: at small 7. A second test was made using values at

= 10,000 and ¢ == 100,000 as the basis of extrs apolation to ¢ = 1,000,000, (The
V&lu(, of 7 at ¢ = 55,000 was also used for the Hor ton equation.) The second tesh
gave a check on the reliability of the ec fuations at large ¢ The results of these
tests are summarized in table 1. Table 2 2, which compares the values of the pa-

TABLE 1

Lon b?/ joui “1z¢f25;az’zcm 0924&510729

For ¢ = 105 gee, For f = 105 sec,
i (cm ) | % error i {cm.) 96 err

Value obtained from detailed analysis... ... .| 4.477 0 18.670 0

Extrapolation by:

Horton equation (8)......... .. ... .. .. 8.147 -+-82 20.412 --58
Kostinkov equation (10y...... .. . . .. 4.225 —5.6 15.295 —18

Bauation (12y. ... ... ... .. 4 448 —0.65 18.206 —2.6
Bquation (18). ... . 4.449 —0.63 17.755

TABLE 2

Sxabzlm af 'pa'amé s 15 four “:rzﬁh‘vahon equaiions’

- e e e
Equation True Value smqﬁtﬁ%\cf‘;’r
Horti)n & ¥ - 572.9 X 107 181.3 X 10-¢
vy 12.30 X 107 76.06 X 10-¢ 27.91 X 1g7s
B No physical significanee 9.18 X 10+ 0.92 X 10+
Kostiskov (10) « No physical sign zfmxmw 11.738 X 107 9.311 X 10°¢
o except at £ = 0, where 0.5112 0.5831
K= 8, o == /ﬁ
Equation (12) Y 142,800* 142,700 131,900
Z 11.23% 11.23 10.32
Equation (18) S 12,538 % 107+ 12.534 X 10973 12,493 » 192
A 4.67 X 1o 4.85 X 1076 5.26 X 1078
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rameters determined for each time range and (where relevant) the true values, is
also of interest.

Small percentage errors in table 1 indicate a good fit. So also does stability in
the value of a parameter in table 2, and (where applicable) agreement with the
tme value available from the data of the problem or from the detailed analysis.

The bad failure of the Horton equation, despite its extra parameter, should be
noted. The Kostinkov equation fits D}Cdn rately well, especially at small ¢,
Squations (12) and (I8) fit very will indeed.

SUMMARY

A new physieal property of porous media, sorplivity, is proposed. In some ways
akin to permeability, this is escentially a measure of the capacity of the medium
to absorb or desorb Hquid by capillarity; the practical unit and dimensions of
sorptivity are given. Uhe inirinsic sorptivdy (like intrinsie permeability) is an
expression of the geometry of the medium, and is also defined and subjected to

£~

dimansional analysis,

Algebraie “infiltration equations’” are discussed in the light of the analysis of
the present series and are tested for goodness of it in a numerical example. The
Horton equation fails badly and the Iostiskov equation fits moderately well,
An equation pr eviously proposed by the author is found to be the exact outcome
of the analysis for a special shape of 2 often approximated to in nature. That
equation is awkward to handle, but a simpler mf;li ation equation derived from
the analysis is also found to give good results, and scems well suited to the needs
of applied hydrology. This equation is

1= Sp7 4+ Af

where 7 is the eumulative infilbration, £ is the time, § is the sorptivity, and 4 a

gecond parameter which is also i“e}ated to the analysis developed in this series.
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