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ABSTRACT 

Kutflek, M., 1980. Constant-rainfall infiltration. J. Hydrol., 45: 289--303. 

An approximate solution of the infiltration equation for rain of constant intensity is 
developed. From the theory, the ponding time and the development of the moisture profile 
at time shorter than ponding time are determined. Using the theoretical background, simple 
empirical and algebraic equations are derived for the calculation of the ponding time. The 
solutions are compared with the results of the numerical analysis; good agreement has been 
found. The solution of the infiltration for time greater than ponding time is obtained either 
for "delta function" soil or for an empirical infiltration equation. 

INTRODUCTION 

The practical importance of studies on rain infiltration has been recognized 
for a long time and numerical solutions have been developed to describe the 
phenomena (Rubin and Steinhardt, 1963, 1964; Rubin, 1966). In addition, 
Parlange (1972) published an approximate solution of the infiltration equation 
with a constant flux at the surface, while Mein and Larson (1973), and 
Swartzendruber (1974) discussed important features of the problem for 
"delta function" soil. However, a detailed discussion comparing an approx- 
imate analytical solution with the results of numerical analysis and with some 
intuitive or empirical approaches is still lacking. Furthermore, some hydrolog- 
ically important terms such as "ponding time" are often not exactly inter- 
preted. 

The present paper attempts to identify explicitly the important aspects of 
the process, and develops an approximate analysis of constant-rate rain in- 
filtration in a homogeneous soil. 

APPROXIMATE ANALYTICAL SOLUTION 

The basic equation describing one-dimensional infiltration can be written: 

*The main part has been prepared during the author's stay as Pye Fellow at CSIRO, 
Division of Environmental Mechanics, Canberra, A.C.T., Australia. 
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and can be solved for the initial condition: 

t = 0 ;  0 = 0i; z > 0 (2) 

where 0 is the volumetric moisture content;  t is time; z is the vertical co- 
ordinate positive downward; D is the moisture diffusivity, D (0); k is the un- 
saturated hydraulic conductivity, k (0), reaching ks at the saturation. 

However, the boundary condition depends on the nature and duration of 
the rainfall intensity Vr, relative to Vc, the steady long-time infiltration rate in 
a ponded soil with hydraulic head 40 -* 0. Two conditions are recognised: 

(1) 0 < Vr/Vc  < 1. In this case the flow is described by a constant-flux 
boundary condition, viz.: 

t t> 0, D ( a O / ~ z )  - k = - V r ,  z = 0 (3) 

and the surface water content  00 is time-dependent, approaching after great 
period 00c, depending on Vr = k ( O o D  - k(00i). The soil surface never ponds. 

(2) Vr/Vc  > 1. Two time intervals now become important:  
(a) 0 < t < tp. During this interval, the rate at which the soil can accept 

water exceeds Vr and the soil surface remains unsaturated. The flow process 
is described by condition (3). 

(b) t ~> tp. At the ponding time tp the soil surface is effectively saturated 
the rainfall rate exceeds then the rate at which the soil will accept water, 
the excess runs off  and infiltration can be described in terms of the constant  
concentration boundary condition: 

t >i tp, 0 = 0s, z = 0 (4) 

i f  Vr/Vc  ~ oo, the flow is characterized by the constant-concentration bound- 
ary condition, viz.: 

t > 0, 0 = 0s, z = 0 (4a) 

where 0s is the moisture content  at saturation. 
For the solution of the cases (1) and (2a), i.e. for the constant-rate infiltra- 

tion, the concept of flux concentration relation (Philip, 1973) will be applied. 
This approach improves substantially the Parlange's (1971) original perturba- 
tion method.  The flux concentration relation, F(O), is defined by: 

F ( O )  = ( v  - k i ) / ( V r  - ki) (5) 

where v is the flow rate, ki is the hydraulic conductivity at 0 = Oi, and the 
relative moisture content:  

0 = (0 - 0i)/(0o-0i) 

Because 0o is t ime-dependent within the time interval 0 < t < tp, F will also 
be time-dependent,  i.e. F(O, t). The further procedure follows the derivation 
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of the solution of  eq. 1 by Smiles (1978) for a similar problem of the constant- 
flux filtration in a two-phase system of slurry. 

Eq. 1 is the result of  the combination of  the flow equation: 

v = -D(~O/~z)  + k (6) 

and of the continuity equation: 

~010 t = -0  vl~z (7) 

These equations are now to be treated separately. Introducing eq. 5 into eq. 6, 
we obtain: 

F ( v r -  k i ) -  (k - k i )  = -D(~O/~z)  (8) 

and the integration from z = 0 yields: 

oo(t) D - £  
z dO (9) 

Jo F(vr  - ki) - (k - ki) 

see also equation (26) of  Philip and Knight (1974). Then, integration of eq. 7 
gives for vi = k i: 

z z 

( V r - k i ) t  = foo O d Z -  fooOidz (10) 

Substi tut ion of  eq. 9 into eq. 10 and integration leads to: 

°o(t) (0 - 8i)D 
( V r - k i ) t  = ( dO (11) 

F ( v r - k i ) - ( k - k i )  Jo i 

see also equation (14a) of  Smiles (1978). 
Note that  eq. 9 corresponds with Parlange's (1972) equation (8) with F = O. 

This F(O) relationship restricts principally the validity of  the Parlange's solu- 
tion either to the "delta funct ion"  soil for all t, or to all soils for t -* oo (Philip, 
1973). However, in our problem with Vr > ks, the condition of t -* oo is not  
applicable. On the other hand, Parlange's (1972) equation (6) is the analogue 
of  our eq. 11, when we set F=I ,  a condition not  applicable to infiltration. 
The problems of Parlange's method of  solution of  constant-concentration 
infiltration are discussed in detail in the paper of  Knight and Philip (1974). 

Therefore, we consider the derived solutions as more general ones, fitting 
all soil models. If F(O) is chosen properly, the iteration procedure,  originally 
proposed for this type  of  solution by Philip and Knight (1974), appears to be 
unnecessary at least for the majori ty of  practical tasks where slight errors can 
be neglected. 
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Comparison with the numerical solutions 

In o rder  to  c h e c k  up  the  analy t ica l  so lu t ion ,  the  resul ts  o f  Rub in ' s  {1966) 
numer i ca l  p r o c e d u r e  fo r  in f i l t ra t ion  f r o m  c o n s t a n t  rain in tens i ty  in R e h o v o t  
sand were  c o m p a r e d  wi th  the  resul ts  o b t a i n e d  f r o m  o u r  solut ion.  The  gradual  
increase  o f  m o i s t u r e  c o n t e n t  on  the  soil surface  Oo(t) was c o m p u t e d  using 
eq. 11, and  the  mo i s t u r e  prof i les  O(z) at  t = 20 s and  t = 110 s, respect ive ly ,  
were  c o m p u t e d  f r o m  eq. 9. In b o t h  eqs. 9 and  11, the  func t iona l  re la t ionsh ip  
F ( O )  was s impl i f ied  b y  the  a p p r o x i m a t e  express ion  F = O which  is valid 
exac t ly  fo r  " d e l t a  f u n c t i o n "  soil and  to  which  the  charac ter i s t ics  o f  the  
R e h o v o t  sand are a s sumed  to  be re la t ively  close. F o r  b e t t e r  unde r s t and ing  o f  
the  i m p o r t a n c e  o f  F (O) ,  the  re la t ionsh ip  F = 1 (Par lange 's  so lu t ion)  was also 
included.  In  the  c o m p u t a t i o n ,  R u b i n ' s  (1966)  ana ly t ica l  express ions  o f  mois-  
tu re  po ten t i a l ,  $ (0); his e q u a t i o n  (41),  k (0); and  his equa t i on  (42)  were  used. 
T h e n  the  D(O) re la t ionsh ip  was o b t a i n e d  f r o m  k (0) and  f r o m  the  der ivat ive  of  

(0) wi th  r e spec t  to  0. The  values o f  ~ ,  k and  D co r r e spond ing  to  the  series 
o f  mo i s tu r e  c o n t e n t s  0 are a r ranged  fo r  the  sake of  conven ience  in Tab le  I. 
T h e  c o n s t a n t  in t ens i ty  rain was t a k e n  a t  Vr = 1 .5ks  = 0 . 01995  c m  s -1. 

The  increase  o f  the  m o i s t u r e  c o n t e n t  on  the  surface  wi th  t ime  t is p l o t t e d  
in Fig. 1. I t  can be seen t h a t  the re  is a rapid  change o f  mo i s tu r e  c o n t e n t  close 
to  t = 0, while nea r  to  t = tp,  the  change  of  00 is ve ry  small.  F r o m  this it  fol- 
lows t h a t  the  e x p e r i m e n t a l  d e t e r m i n a t i o n  of  tp at  00 = 0s will be  very  diff icul t .  
Par lange ' s  p r o c e d u r e  wi th  F = 1 leads to  h igher  values o f  00 and c o n s e q u e n t l y  
to  the  u n d e r e s t i m a t i o n  of  the  pond i ng  t ime  tp .  

In  Fig. 2, the  c o m p a r i s o n  b e t w e e n  R ub i n ' s  (1966)  da ta  and  the  c o m p u t a t i o n s  
o f  the  m o i s t u r e  prof i le  0 (z) accord ing  to  eq. 9 is p l o t t e d  fo r  t imes  t = 20 s and 
t = 110 s. F o r  sho r t e r  per iods ,  the  choice  o f  F does  n o t  p lay  an i m p o r t a n t  role  
and  the re  is a ve ry  good  a g r e e m e n t  b e t w e e n  the  resul ts  o f  Rub in ' s  numer ica l  

TABLEI 

Values  o f  ~ - -  mois ture  potent ia l  per uni t  we ight ;  k -- unsaturated conductivity; and D -  
diffusivity, depending upon water content 0 for Rehovot sand of Rubin (1966) 

o ¢ k D 
(era 3 em -3) ,(era) (era s -l ) (era 2 s -1) 

0.01 -2.82-10 s 2.95.10 -13 3.12:10 -s 
0.05 -75  6.12.10 -~ 7.61 '10 -3 
0.10 -43  6.39"10 -5 2.06 "10 -2 
0.15 -32  1.65 -10 -4 2.45 "10 -2 
0.20 -26  4.18-10 -4 3.83 "10 -2 
0.25 -22  1.06.10 -3 7.49 "10 -2 
0.30 -19  2.69 "I0 -3 1.82 '10 -I 
0.35 -15  6.81 '10 .3 5.40 "10 -I 
0.38 -13 1.19"10 -2 1.12 
0.387 -12  1.33 "10 -2 1.33 
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Fig. 1. The increase of the moisture content  on the surface with time eo(t ) during the rain 
infiltration according to eq. 11 for Rubin 's  (1966) Rehovot sand with constant rain intensity 
v r = 1.5k s = 0.01995 cm s -1. 

MOISTURE COIJTEIJT, ~., ¢~c,7~ 

J" 

I0 

0 
0.I 0.2 0.3 ~ ~ b 

• / 
• • RUB~I~ J 

8 "  

. 

e= e 

F=O 

Fig. 2. The moisture content  profiles e(z) during rain infiltration at time t = 20 s and t = 
110 s according to eq. 9 for Rubin 's  (1966) Rehovot sand and for rain intensity v r = 
0.01995 cm s -1. Full points  correspond to Rubin 's  data of numerical analysis. 

p r o c e d u r e  a n d  t he  c o m p u t e d  p ro f i l e  a c c o r d i n g  to  o u r  s o l u t i o n ,  eq.  9 f o r  F = O, 
wh i l e  fo r  P a r l a n g e ' s  F = I ,  a d i f f e r e n c e  occurs .  F o r  l o n g e r  pe r iods ,  p r a c t i c a l l y  
c lose  t o  t h e  p o n d i n g  t i m e ,  t h e  r e su l t s  are sens i t ive  aga ins t  t he  a p p r o x i m a t i o n  
o f  F a n d  i t  c a n  be  seen  t h a t  a g o o d  a g r e e m e n t  is o b t a i n e d  fo r  F = O, w h i c h  
c o r r e s p o n d s  to  t h e  " d e l t a  f u n c t i o n "  soil ,  wh i l e  P a r l a n g e ' s  p r o c e d u r e  fo r  F = 1 
leads  t o  a d i f f e r e n t  m o i s t u r e  p rof i l e .  
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In a similar way, the results of  the numerical analysis of Haverkamp et al. 
(1977) were used. In their model,  saturated hydraulic conduct ivi ty of sand 
was ks = 0.0944 cm s -1 and the constant  flux on the boundary  was Vr = 
0.0038 cm s- '  = 0.403ks. Moisture profiles computed  according to eq. 9 are 
compared with Haverkamp's data in Fig. 3. A good agreement was found be- 
tween both. Let  us remind here that  a relatively poorer  agreement between 
Parlange's procedure and the results of  the numerical analysis were demon- 
strated in the paper of  Haverkamp et ai. The sensitivity of our solution upon 
the approximate estimation of  F(O) can be seen, but  the differences between 
the profiles for  F = O and F = 00.a are of  low practical importance.  Generally, 
it can be concluded that  the proposed analytical solution leads to a good 
agreement with the results of numerical analysis, and that  the approximate 
estimation of  F ~ 0 m is suitable for  practical tasks. However, a more detailed 
study on the approximate  expression for F(O) would be advantageous. 

MOI3T'URE" COk/7"E'HT i ~" c, wa.c/ '~ J 

O. fO 0.13" O.2O O. P~" 

fO" . 7 

F. O -'x ~ ' ~ ' "  

,30 

Fig. 3. The mois ture  c o n t e n t  profi les  O(z) during rain inf i l t ra t ion at  t ime t = 0.05 hr. and 
t = 0.2 hr. according to  eq. 9 for  Haverkamp et  al. 's (1977)  sand and for  Vr = 0.0038 cm s -1. 
Full points are Haverkamp et  al. 's results o f  the  numerical  analysis. 

PONDING TIME 

Theory 

The term ponding t ime tp denotes the t ime at which the rainfall rate ex- 
ceeds the rate at which the soil surface can accept water so that  water corn- 
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mences to pond on the surface. Since ponding time cannot  occur before O0 
reaches saturation, the condition for t = tp is 0o = Os. Applying this to eq. 11, 
neglecting gravity and if Vr > ks, we obtain: 

1 °s D 
tp - Vr 2 f0i ( 0 - 0 i ) - - F  dO (12) 

The nth iterative estimate of  sorptivity Sn is [Philip and Knight, 1974, 
equation (14)] : 

D dO (13) Sn = 2 ( 0 - 0 i )  F--~ 

where Fn is the nth iterative estimate of  F. If F is carefully chosen, the itera- 
tion procedure can be neglected, i.e. Fn  ~ F(O), and then: 

tp = S212V2r (14) 

It is useful to compare eq. 14 with the results of  two intuitive procedures. 
For  this comparison, the equation of  infiltration rate for the constant-concen- 
tration boundary  condition (4a) will be applied and index p can be used. If 
gravitation is neglected for the sake of  simplicity, then: 

Vp = ~ S t  - ' n  (15) 

In the first alternative, the ponding time is identified with the time when 
Vp = yr. It follows from the eq. 15 that  tpv = S2/4V2r. 

In the second alternative, the ponding time is taken as equal to the time 
when ip = ir, where i designates the cumulative value either of the constant- 
concentrat ion infiltration (index p), or of the rain (index r): 

. 
p l  

tpi Vr = Vp dt  (16) 
0 

as demonstrated in Fig.4. Using eq. 15 we obtain tpi = S2/V2r . The intuitively 
derived values of  ponding time tpv and tpi are in the following relation to 
ponding time tp obtained by  quasi-analytical solution, when gravitation is 
neglected: tp = 2tpv = tpi/2. 

It is obvious that  the same result as in eq. 14 will be obtained if eq. 15 is 
subst i tuted in: 

tpv 
Vr tp = f Vp dt  

J0 
(17) 

where tpv = S2/4V2r, as derived earlier. The relation (17) will be utilized later 
on. Therefore, the value of  tp can also be obtained graphically, using eq. 17, 
as demonstrated in Fig. 4. This procedure is applicable more generally to the 
determination of  the ponding time even from a rain of  non-constant  intensity. 
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Fig. 4. Determination of ponding time tp from the graphs of infiltration with constant- 
concentration boundary condition and from the graphs of rainfall. Graphs of both deter- 
minations are plotted as rate vs. time and cumulative values vs. time. 

The  re la t ion (17) has been  e x t e n d e d  to  a general  f o rm u la t i o n  o f  the  depen-  
dence  o f  the  rate  o f  rain inf i l t ra t ion  u p o n  the  cumula t ive  inf i l t ra t ion  by  Mls 
(1980) .  

When gravi tat ion is cons idered ,  eq. 11 will be used for  t = tp and 00 = 0s 
again, giving: 

1 o, (0 - Oi)D 
tp = Vr-k ' i  ¢o(i F t v r - k i ) - t k - k i )  dO (18) 

and the  tp value will be shi f ted slightly nearer  to  the  tpv value, as can be 
seen in Fig. 4. 

Le t  us r emind  here  t ha t  Parlange's  (1972)  a p p r o x i m a t e  equa t ion  leads 
to :  

o6 (0  - Oi)D 1 
tp = ( - -  - -  d0 (19) 

i O r  O r - -  k ¢0 

If  ki in eq. 18 is negligibly small, we f ind the  iden t i ty  of  eqs. 18 and 19 for  
F=I.  Since F < 1 wi th  the  e x c e p t i o n  o f  O = 1, the  so lu t ion  accord ing  to  eq. 19 
would  lead to  a sys temat ica l ly  lower  value o f  tp,  when  c o m p a r e d  wi th  eq. 18. 

However ,  i t  is a c o m m o n  s i tua t ion  tha t  D(0)  and k(0) are n o t  k n o w n  and 
the  on ly  i n f o r m a t i o n  at  hand  is o f  inf i l t ra t ion  wi th  the  cons tan t~concen t ra t ion  
b o u n d a r y  cond i t ion ,  i.e. the  resul t  o f  the  doub le  ring in f i l t rome te r  test .  The  
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test is then evaluated usually according to one of  the following equations: 

Vp = S t - ' / : / 2  + A (Philip, 1957) (20) 

Vp = C~ t -a (Kostiakov, 1932) (21) 

Vp = C: t -~ + Vc (Mezencev, 1948) (22) 

Vp = (v* - V*c )t  -~ + Vc (Dvorak and Hol:~, 1960) (23) 

Vp = ks(~ 0 - ~ f + L f ) / L f  (Green and Ampt,  1911) (24) 

where A is a constant  close to hydraulic conductivi ty ks; C1, C:, a,/~ are 
empirical constants with appropriate dimensions a ~ 1, ,6 ~ 1; v, is the infiltra- 
tion rate at t = l ,  the most  appropriate unit is the minute; the asterisk denotes 
the changed dimensions with regard to the empirical coefficient/~; ¢o is the 
moisture potential at z = 0, expressed per unit  weight, i.e. [L] ,  here ~o ~> 0; 
~f is the moisture potential  on the wetting front, numerically negative; and 
Lf is the depth of  the wetting front. 

Combining eq. 20 with eq. 17, we obtain for Vr = bA:  

tp = 4 b ( b -  1) ~ (25) 

The graphical interpretation of  eq. 25 is shown in Fig. 5. It can be seen that  
the decrease of  the sorptivity causes a reduction of  the ponding time of  more 
than the same order, e.g., if the change of  the initial moisture content  from 
wilting point  to field capacity causes the decrease of  the sorptivity by roughly 
half an order of  magnitude, the ponding time will be reduced by more than 

S~ ,~,,~lrallll] Imzn i)Hlllr IIIHIH) atlrlTr Ilalallla J,,~l~,,~l~,~ 
II[[III lllIII I IIlllll I I I[IIIII i [IIIII l I llll[IL~rL,sr IJ~PIIIL~r LJ[,~'#FI 

.~iiiiiiiii "iiiiii "iiiiiii i iiiiiiJl iiiiii i iLi~i~TI~r-L~hT~'~FT.,I~ 
lilllll IIIIIH IIIIIII II llllll IIIIIII 

~ll lllltll llIllll lllllll l i IIIII IIILIIFIi'~erI~F#f~FLI~J~Q~ 

~.ll I!llIll [111111 I I ~ F - - " ~ J i ~ 4 ~ I J , ' g ,  tglF~,"T~,,~IIIIT'I ll 
~11 I tllrll I IIIIII ~ .~" l .~ , ,n t~ 'J f  J,~g,~TILl,~,~J~,lj,,fl ii,lfj,,,~[i i ijlfl- 

,,I! !!!!!!! I/ 
'~lJ Jllllil U , l ' ~ l l t 1 . ~ , " t ' ~ , ~ l ~ , ~ ~ l l l l , l / I - ~  . . . . . . . . . . . . . . . . . . . . . .  I I IIIIIL " 

~ l l l l ] l I H ~ ~  J#FTIlII I ltllfll 
. ~ 1 1 1 L I , ~ F , , ~ ~ ] ~ S , , ~ , . ~ . , i ' T t I [ I J ' ~ I  I lillll 
~ l ~  ~F).,,,P'FbI,H~J'i~.,,Pr~,II~J~'T.,I,~RILIF#~r] Ili,l,~[ I ] l l l l l l l  

~ ~ 10 1o0 Ioo0 ~o000 

Fig. 5. The dependence of the ponding time tp upon S / A  ratio, where S is the sorptivity, 
A the second term in Philip's (1957) algebraic equation of infiltration for rain intensities 
vr = b A ,  see eq. 25. 
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half an order. The relationship between the ponding time and the rain intensity 
is strongly non-linear, a great decrease of  the rain intensity within the range of 
high intensities causes a slight increase of  the ponding time while in the range 
of  low intensities a small decrease of  the intensity results in great increase of 
the ponding time, just as follows from eq. 25. 

Mezencev's equation, in the form of eq. 23, gives with eq. 17 for v~ = aVe 

a n d  Vr = b v e  the expression: 

r a - 1 1 1 / ~  b-13 

tp = /Lb_lJ /  b ( 1 - ~ )  
( 26) 

which is an equivalent of  eq. 25 for ~ = 1 / 2 ,  S = 2(v~ - Vc), A = Vc. An equation 
similar to eq. 26 was intuitively proposed by Benetin (1970). Eq. 26 is also the 
solution of Kostiakov's equation (21) for Vc = O. 

For the sake of  completeness, the solution of tp for eq. 24 (see Mein and 
Larson, 1973) will also be included, giving for Vr = b k s :  

~f(O s - Oi) 1 
tp - (27) 

k s b ( b -  1) 

The influence of the initial moisture content  0i upon the value of tp for the 
variation of  Vr can be read from the graph in Fig. 6. It is demonstrated here 
that  the influence of the initial moisture content  0i, or, generally of (0s - 0i) 
decreases with the decrease of  the rain intensity and that the influence of 0i 
will he reduced in sandy soils with high k s and low ~f values. 

~IX IXIX~\ I 11 lJTll 
.I X~ ~IX~K~\\\ IIII I I II IIIII 

0 , 
~Of  QO,~- Of  0-~ gO ~ 0  fO0 

Fig. 6. The  p ond ing  t ime tp as in f luenced  by the initial mois ture  0 i or by  the mois ture  
c o m p l e m e n t  (0 s - 0i) and by the rain in tens i ty  v r = b k  s according  to  eq. 27 derived for 
"del ta  f u n c t i o n "  soil.  
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Comparison with the results o f  the numerical analysis 

T h e  s o l u t i o n  o f  t h e  p o n d i n g  t i m e  tp a c c o r d i n g  t o  eq .  2 6  is c o m p a r e d  w i t h  

t h e  r e s u l t s  o b t a i n e d  b y  t h e  n u m e r i c a l  a n a l y s i s  o f  S m i t h  ( 1 9 7 2 )  a n d  w i t h  t h e  

c o r r e c t e d  r e s u l t s  o b t a i n e d  s u b s e q u e n t l y  b y  P a r l a n g e  a n d  S m i t h  ( 1 9 7 6 )  f o r  t h e  

TABLE II 

Comparison of  ponding t ime tp de termined  numerical ly  (Smith,  1972;  Parlange and Smith,  
1975) with the analytical  solut ion according to eq. 26 and with the values of  tpv (eq. 28) 
and tpi (eq. 29), see also Fig. 4 

Smith ' s  data for v r 
inf i l t rat ion if (cm/min . )  
V r - - >  ¢~ 

Numerical ly  Analyt ical ly  

1972 1975 eq. 28 eq. 26 eq. 29 
tp tp tpv tp tpi 
(rain.) (rain.) (rain.) (min.)  (rain.) 

Poudre  sand 0.212 35.0 
v c = 0.1397 cm/min .  0.339 9.05 8.74 
v , - v  c = 0.493 cm/min .  0.423 5.2 5.09 
/~ = 0.585 0.508 3.52 3.36 

0.635 2.13 2.07 
0.762 1.45 1.39 
0.931 0.93 0.88 

26.62 39.41 119.69 
4.70 8.60 21.15 
2.58 5.01 11.59 
1.65 3.33 7.40 
0.99 2.08 4.46 
0.67 1.44 3.02 
0.44 0.98 2.00 

Nibley silty clay 0.0635 33.41 30.12 16.53 31.72 71.09 
loam 0.0868 17.42 16.48 7.98 16.02 34.33 
v c = 0.0167 cm/min .  0.127 7.83 6.92 3.53 7.35 15.17 
v l - v  c = 0.222 cm/min .  0.148 5.73 4.94 2.58 5.43 11.08 

= 0.555 0.169 4.33 3.80 1.97 4.19 8.48 
0.191 3.39 3.02 1.55 3.31 6.65 
0.212 2.78 1.26 2.71 5.42 

Colby silt loam 0.0635 13.42 11.8 6.40 12.82 26.84 
v c = 0.0085 cm/min .  0.0847 7.58 6.85 3.49 7.12 14.62 
v I - v  c = 0.149 cm/min .  0.1058 4.83 4.33 2.21 4.57 9.28 

= 0.537 0.1270 3.32 2.92 1.53 3.19 6.43 
0.1693 1.79 1.57 0.87 1.82 3.64 
0.3175 0.59 0.483 0.26 0.55 1.08 

Muren clay 0.0817 15.64 15.71 8.09 16.62 34.22 
v c = 0.0095 cm/min .  0 .1270 7.04 7.12 3.56 7.46 15.04 
v ~ - v  c -- 0.234 cm/min .  0.1481 5.21 5.25 2.62 5.54 11.10 

= 0.543 0.1693 4.02 4.06 2.02 4.28 8.54 
0 .1905 3.19 3.22 1.61 3.42 6.79 
0.2138 2.61 2.54 1.28 2.74 5.43 

Nickel gravelly 0.0847 13.07 17.13 8.78 17.13 39.26 
sandy loam 0.127 5.73 7.17 3.42 7.17 15.30 
v c = 0.0267 cm/min .  0.1481 4.16 5.18 2.46 5.26 11.01 
v ~ - v  c = 0.205 cm/min .  0.1693 3.14 3.87 1.87 4.05 8.35 
/~ = 0.581 0.1905 2.44 2.97 1.47 3.23 6.58 

0.2117 1.94 2.32 1.19 2.64 5.33 



300 

same en t ry  values of  soils and rain intensities. The da ta  are presented in 
Table II. In addi t ion,  this table contains the values of  tpv and tpi so tha t  the 
intui t ive approaches can be compared  with  the relat ion (17) which was the 
basis for  obta ining eq. 26. Here again, tpv is the t ime of  intersect ion of  the 
inf i l t ra t ion rate for bounda ry  condi t ion  (4a) with the rain intensi ty ,  i.e. for  
Vp = vr by  using eq. 23: 

tpv = [(a - 1)/(b - 1)] 1/# (28) 

and tpi is the t ime of  in tersect ion of  the cumulat ive inf i l t ra t ion for bounda ry  
condi t ion  (4a) with the cumulat ive rain, i.e. for ip = i r f rom eq. 23: 

tpi = [(a - 1)/{(b - 1)(1 -~)}]~/# (29) 

where a = Vl/Vc, b = Vr/V c. It  can be seen f rom Table II, tha t  the tp values 
calculated according to eq. 26 were very close to the numerical ly  obta ined tp 
values of  Smith (1972) and even closer to  the ones of  Parlange and Smith 
(1975).  As it follows f rom comparison,  tp value is in be tween those of  tpv and 
tpi. However,  the  in fo rmat ion  on mutua l  relationships derived for negligible 
gravity is n o t  very exact.  

I N F I L T R A T I O N  IN THE TIME I N T E R V A L  t > tp 

For  t > tp we suppose tha t  there is no water  accumula t ion  on the soil 
surface, the  runo f f  conducts  all the  excess water  away and at z = 0 the condi- 
t ion ~0 = 0 is mainta ined.  The f low is therefore  characterized by the constant-  
concen t ra t ion  condi t ion  on the bounda ry  with  the appropriate  shif t  of  the 
t-axis. 

For  "de l t a  f u n c t i o n "  soil, i t  follows f rom eq. 24 that :  

t>tp ~ i p  i 
ks ftp d t  = di (30) 

ip i -  ~f(0 s - 0i) 

Solving and re-arranging eq. 30, we obtain:  

t*  = i~' - l n ( 1  + i~' - i ~ )  ( 3 1 )  

where the asterisk denotes  the dimensionless terms:  

t* = - k s t / [ ( o s -  oi)~f] 

i~ = i * - k s l v r ,  i~i = i*ks lvr  

and 

i*  = - i / [ ( o s -  0i)~f] 

Eq. 31 will be compared  with  the solut ion of  eq. 24 for  ponded  inf i l t ra t ion 
(i.e. for  cons tan t -concen t ra t ion  bounda ry  condi t ion)  when ~0 = 0 for  t /> 0: 

t* = i * - l n ( 1  + i*) (32) 
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The  cond i t ion  for  which eq. 32 was der ived can also be fo rm u la t ed  as infiltra- 
t ion  f r om the  rain of  in tens i ty  Vr -~ ~ ,  when  the  non- inf i l t ra ted  excess water  
is r emoved  by  the  ins tan taneous  runof f .  If  in eq .31  Vr = ¢¢, t hen  e q . 3 2  is ob- 
tained.  

The  use of  eq. 31 is d i f f icul t  due  to  the  implici t  express ion of  the  cumula t ive  
inf i l t ra t ion.  The  eqs. 20 and 23 will be the rea f t e r  fu r the r  applied.  If  the  infiltra- 
t ion  rate f r om the  rain at t = tp equals the  ra te  o f  inf i l t ra t ion  wi th  constant -  
c o n c e n t r a t i o n  b o u n d a r y  cond i t ion  at  tpv, we are a l lowed to  assume tha t  eqs. 
20 and 23 will remain  valid p rov ided  tha t  the  t ime scale is shi f ted by (tp - tpv). 
The  eq. 23 can be t r an s fo rmed  to:  

r t a - l " ' / ~ /  b - ~  -~ 
v 

and eq. 20 to:  

S 2 -iI~ 
] _ + A (34) 

v = ~$1 t 4 A 2 b ( b _ l ) j  

Eq. 33 was used for  Smith ' s  (1972)  da ta  and some o f  the  evaluated  curves o f  
the  inf i l t ra t ion  rate  vs. t ime  are p lo t t ed  in Fig. 7 as an example  o f  a very  close 
agreement  be tween  the  numer ica l  analysis and the  appl ica t ion  o f  eq. 33. The  
rainfall  inf i l t ra t ion  can be es t imated  when  the  results o f  the  simple field tes t  
wi th  double  ring in f i l t rome te r  are known.  These  conclus ions  are valid for  

"--I W/JLEY $CL JMITH 

i ~ Q  ('~) 
COLBY SL SMITH ...... 

~.. " ~ ' k ~ . . .  ,.~MffH . . . . . . . .  

• ca. (~) 

o 1o 2.0 JO  4O SO GO 

T / M E ,  t ,  rnln 

Fig. 7. Comparison of infiltration rate from rainfall according to Smith's (1972) numerical 
procedure and according to eq. 33 when information on the ponded infiltration is given. 
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homogeneous soils wi thout  existence of  preferential ways, cracks and other 
types of  heterogeneity and irregularity in the porous system, see Kutilek and 
Nov~k (1976), and Peschke and Kutilek (1976). 

CONCLUSIONS 

The quasi-analytical technique of solution of infiltration by Philip and 
Knight (1974) was applied to infiltration with constant  flux through the 
boundary.  This type  of  f low is the simplest one for rainfall infiltration and for 
hydrology. The results of  the analytical procedure were compared with 
empirical approaches and with the numerical solutions of Rubin (1966), 
Smith (1972), and Haverkamp et al. (1977). 

Ponding time tp can be computed  when the basic transport  coefficients 
D(O) and k(O) of the soil are known, see eq. 18. Or, if the infiltration rate-- 
time relationship for infiltration with constant-concentrat ion boundary  condi- 
tion is measured and the rain intensity Vr is given, the tp value can simply be 
determined according to the general eq. 17 which is further elaborated in eq. 
25, eq. 26, or eq. 27. 

For the computat ion of the moisture profile when t < tp, eq. 9 was found 
as well fitting provided that the F(O) relationship is well approximated. 

Having the information on the ponding time tp, the infiltration rate at 
t > tp can be computed  using a simply modified equation of infiltration with 
constant-concentrat ion boundary  condition, see eqs. 25 and 26. 

ACKNOWLEDGMENTS 

The author acknowledges with gratitude the discussions at the Division of 
Environmental Mechanics with Dr. D.E. Smiles, Dr. I. White, and K.M. Perroux 
and is grateful to Dr. D.E. Smiles for access to his manuscript (Smiles, 1978) 
before its publication. He thanks Dr. J. Mls and Mrs. M. Cislerov~ for assistance 
in evaluation of the data. 

REFERENCES 

Benetin, J., 1970. Soil Water Dynamics. Slovak Academy of Sciences Publishing Co., 
Bratislava, 268 pp. (in Slovak). 

Dvorak, J. and Hol~, M., 1960. Optimum intensity of spray irrigation. Proc. 4th Congr. 
ICID, R. 18, Q12, pp. 12 .337-12 .349 .  

Green, W.H. and Ampt ,  G.A., 1911. Studies on soil physics, I. The flow air and water 
through soils. J. Agric. Sci., 4: 1--24. 

Haverkamp, R., Vauclin, M., Touma, J., Wierenga, P.J. and Vachaud, G., 1977. A compar- 
ison of  numerical simulation models for one-dimensional infiltration. Soil Sci. Soc. Am. 
J., 41: 285--294. 

Knight, J.H. and Philip, J.R., 1974. On solving the unsaturated flow equation, 2. Critique 
of Parlange's method.  Soil Sci., 116: 407--416. 



303 

Kostiakov, A.N., 1932. On the dynamics of  the coefficient of water percolation in soils 
and on the necessity for studying it from a dynamic point  of view for purposes of 
amelioration. Trans. Comm. Int. Soil Sci. Soc., A, Moscow, pp. 17--21. 

Kutflek, M. and Nov~k, V., 1976. The influence of soil cracks upon infiltration and 
ponding time. In: M. Kutilek and J. ~fitor (Editors), Water in Heavy Soils, Vol. I. Proc. 
Syrup. ICID--ISSS, Bratislava, pp. 126--134. 

Mein, R.G. and Larson, C.L., 1973. Modeling infil tration during a steady rain. Water 
Resour. Res., 9: 384--394. 

Mezencev, V.S., 1948. Theory of the formation of  the surface runoff  on the slope. Meteorol. 
Gidrol., No. 3, pp. 33--40 (in Russian). 

Mls, J., 1980. Effective rainfall estimation. J. Hydrol. ,  45 :305- -311  (this issue). 
Parlange, J.-Y., 1971. Theory of  water movement in soils, 2. One-dimensional infiltration. 

Soil Sci., 111: 170--174. 
Parlange, J.-Y., 1972. Theory of  water movement in soils, 8. One-dimensional infiltration 

with constant flux at the surface. Soil Sci., 114: 1--4. 
Parlange, J.-Y. and Smith, R.E., 1976. Ponding time for variable rainfall rates. Can. J. Soil 

Sci., 56: 121--123. 
Peschke, G. and Kutilek, M., 1976. The role of preferential ways in infiltration. In: 

M. Kutilek and J. ~fitor (Editors), Water in Heavy Soils, Vol. III. Proc. Syrup. ICID-- 
ISSS, Bratislava, pp. 70--84. 

Philip, J.R., 1957. The theory of infiltration, 4. Sorptivity and algebraic infiltration equa- 
tions. Soil Sci., 84: 257--264. 

Philip, J.R., 1973. On solving the unsaturated flow equation, 1. The flux concentration 
relation. Soil Sci., 116: 328--335. 

Philip, J.R. and Knight, J.H., 1974. On solving the unsaturated flow equation, 3. New 
quasi-analytical technique. Soil Sci., 117 : 1--13. 

Rubin, J., 1966. Numerical analysis of ponded rainfall infiltration. In: P.E. Rijtema and 
H. Wassink (Editors), Water in the Unsaturated Zone, Vol. 1. Proc. Syrup. IASH-- 
UNESCO, pp. 440--451. 

Rubin, J. and Steinhardt,  R., 1963. Soil water relations during rain infiltration, I. Theory. 
Soil Sci. Soc. Am. Proc., 27: 246--251. 

Rubin, J. and Steinhardt,  R., 1964. Soil water relations during rain infiltration, III. Water 
uptake at incipient ponding. Soil Sci. Soc. Am. Proc., 28: 614--619. 

Smiles, D.E., 1978. Constant rate fil tration of bentonite.  Chem. Eng. Sci., 33: 1355--1361. 
Smith, R.E., 1972. The infiltration envelope: results from a theoretical infiltrometer. 

J. Hydrol. ,  17: 1--22. 
Swartzendruber,  D., 1974. Infil tration of constant-flux rainfall into soil as analysed by the 

approach of Green and Ampt.  Soil Sci., 117: 272--281. 


