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Drought is among the most damaging of all natural 
disasters, with complex economic, environmental, and 
social eff ects that are oft en far-reaching and long-lasting 

(Wilhite et al., 2007), but soil moisture, the primary variable by 
which agricultural drought is defi ned (Mishra and Singh, 2010), 
is generally underused for drought monitoring. Worldwide, natu-
ral disasters impacted more than half a billion people in 2016, 
of which more than 69% suff ered from the impacts of drought 
(Guha-Sapir et al., 2017). In the United States, the historic 
drought of 2011 and 2012 covered more than half the country, 
making it the most widespread drought since the 1950s (Rippey, 
2015). Th e eff ects of drought are oft en felt fi rst in the agricultural 
sector (Narasimhan and Srinivasan, 2005), and crop failure 
caused by inadequate soil moisture is the hallmark of agricultural 
drought. In this respect, the impact of the 2011 to 2012 drought 
was historic. In 2011, agricultural losses reached US$1.6 billion 
in Oklahoma (Stotts, 2011) and $7.6 billion in Texas (Fannin, 
2012), and nationwide in 2012, more than $30 billion in primar-
ily agricultural damages occurred (Rippey, 2015).

Unlike other natural disasters, drought can develop slowly, 
with eff ects that are oft en felt only long aft er drought onset. 
It is therefore not surprising that considerable eff ort has been 
spent on developing tools to detect and quantify the magnitude 
of drought, and in fact, more than 100 drought indices cur-
rently exist (Zargar et al., 2011). Among the most prominent 
of these are the Palmer drought severity index (PDSI), (Palmer, 
1965), the standardized precipitation index (SPI) (McKee et 
al., 1993) and the United States Drought Monitor (Svoboda et 
al., 2002). Even though soil moisture is the central variable by 
which agricultural drought is defi ned, in situ soil moisture data 
are not explicitly used to construct these and other widely used 
drought indices, which oft en merely incorporate soil moisture 
as a weather-derived variable (Woli et al., 2012). Only recently 
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ABSTRACT
Agricultural drought is characterized by low soil moisture lev-
els that negatively aff ect agricultural production, but in situ soil 
moisture measurements are largely absent from indices com-
monly used to describe agricultural drought. Instead, many 
indices incorporate weather-derived soil moisture estimates, 
which is necessary, in part, because the relationships between 
in situ soil moisture and agricultural-drought impacts are not 
well quantifi ed. Our objective was to use in situ soil moisture 
data from monitoring networks in Oklahoma and West Texas 
to identify a soil moisture-based agricultural drought index that 
is (i) strongly related to crop-yield anomaly across networks, 
(ii) comparable across time and space, and (iii) readily under-
standable. Candidate indices included soil matric potential 
(MP), soil water storage (SWS), and fraction of available water 
capacity (FAW), with indices assessed in their raw form and aft er 
climatological (i.e., anomalies) or statistical standardization. At 
the county level, indices related similarly to crop-yield anomaly, 
with soil moisture-yield anomaly correlation coeffi  cients aver-
aging 0.63, 0.76, and 0.76 for winter wheat, hay, and cotton, 
respectively. However, standardization was essential to maxi-
mize temporal and spatial comparability, and at the regional 
level, standardized indices were more highly correlated with 
crop-yield anomaly than non-standardized indices. Our fi nd-
ings show that existing in situ soil moisture datasets can under-
pin regional drought-monitoring systems. Th e SWS-anomaly 
may be the preferred index because it is comparable across space 
and time, has units that are readily understandable (e.g., mm or 
inches), and can be broadly applied using data from the many in 
situ soil-moisture monitoring networks across the world.
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Core Ideas
• In situ soil moisture data were used to develop agricultural-drought 

indices.
• Promising indices were directly linked to drought impacts (i.e., 

lower crop yield).
• Preferred indices, formulated as anomalies, were comparable across 

time and space.
• Th ese can be derived from in situ soil moisture data common to 

networks worldwide.
• Our methodology is transferrable to other regions with in situ soil 

moisture data.

 CLIMATOLOGY AND WATER MANAGEMENT
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have drought indices based on situ soil moisture been developed 
(Hunt et al., 2009; Martínez-Fernández et al., 2015; Torres et 
al., 2013), and to our knowledge, no studies linking these new 
indices to agricultural drought impacts exist.

The absence of in situ soil moisture from drought indices was 
once unavoidable because of a lack of data, but the situation 
changed with the advent of large-scale monitoring networks 
that began in the 1990s (Ochsner et al., 2013). For example, the 
North American Soil Moisture Database (NASMD) contains a 
catalog of in situ soil moisture data that covers more than 1800 
sites from 33 monitoring networks in North America, with some 
networks having data records that span more than 20 yr (Quiring 
et al., 2016). Similarly, the International Soil Moisture Network 
(ISMN) contains a rapidly expanding database of worldwide in 
situ soil moisture measurements, with data from more than 400 
sites from 14 networks outside of North America (Dorigo et al., 
2011). The wealth of information available in new resources like 
the NASMD and ISMN creates unprecedented opportunities 
for improved drought monitoring using in situ soil moisture data, 
thus the absence of measured soil moisture from drought moni-
toring tools is an important, but solvable, problem.

Several key challenges currently limit the use of in situ soil 
moisture data for drought monitoring and inhibit its translation 
into actionable information for producers. First, few studies have 
evaluated the potential role of existing large scale soil moisture 
networks for drought monitoring (Hunt et al., 2009; Mozny 
et al., 2012), and despite recent advances (Krueger et al., 2015; 
Torres et al., 2013), there remains a general lack of understanding 
of how soil moisture data from these networks is related to actual 
drought impacts. Evidence suggests that soil moisture-based 
drought indices may better reflect potential drought impacts 
than indices derived from meteorological variables (Krueger et 
al., 2017; Narasimhan and Srinivasan, 2005). Likewise, mea-
sured soil moisture may be better for early drought detection 
than the United States Drought Monitor (Ford et al., 2015). 
Still, while the evidence to support the use of measured soil 
moisture in agricultural drought monitoring is tantalizing, the 
absence of statistical models quantitatively linking soil moisture 
to drought impacts remains a primary impediment (Ochsner et 
al., 2013). There is a clear need to link drought to its agricultural 
impacts using existing in situ soil moisture data sets.

There is also no consensus regarding how to best formulate 
soil moisture-based drought indices. For example, a basic index 
may simply represent soil matric potential (MP), volumetric 
soil water content (SWC), or SWC summed across some soil 
depth (soil water storage, SWS) (Dutra et al., 2008). Or it may 
be formulated to represent moisture that is available to plants, 
an increase of index complexity that requires either estimation 
(Hunt et al., 2009) or measurement of soil physical properties 
(Scott et al., 2013) for each measurement location. For these 
types of indices, soil moisture may be expressed as plant avail-
able water (PAW), the difference between measured SWC 
and SWC at permanent wilting point (Scott et al., 2013), or as 
soil water deficit (SWD), the difference between SWC at field 
capacity and measured SWC (Torres et al., 2013).

Furthermore, the index may be subjected to a normalization 
procedure, one method of which uses the physical properties of 
the soil. For example, PAW and SWD may be normalized by 
dividing values by the available water capacity (AWC) (Hunt et 

al., 2009; Martínez-Fernández et al., 2015), where AWC is the 
difference between SWC at field capacity and wilting point. The 
ratio of PAW to AWC is the fraction of available water capacity 
(FAW) and has been used in recent wildfire—drought research 
(Krueger et al., 2015, 2016, 2017). Regardless of formulation, 
indices may also be standardized by comparing values against 
the long-term average (anomaly) (Narasimhan and Srinivasan, 
2005) or by using more complex statistical standardization 
(Carrão et al., 2016; Dutra et al., 2008). One statistical method 
is to fit soil moisture data to a probability density function that 
defines the relationship between soil moisture values and their 
probabilities, and then translate probabilities to a normal distri-
bution to obtain standard normal values. Each of these options 
has inherent strengths and weaknesses, but conclusive evidence 
to support one over the other is lacking.

Because agricultural drought is defined as insufficient soil 
moisture for agricultural production, an ideal agricultural 
drought index is one with soil moisture data at its core, but 
the challenges described above currently hinder the use of soil 
moisture data in this context. We attempt to overcome these 
challenges by using soil moisture data from the densely moni-
tored Oklahoma Mesonet (McPherson et al., 2007) and West 
Texas Mesonet (Schroeder et al., 2005) systems to develop and 
compare soil moisture-based drought indices that link drought 
to its agricultural impacts. Our objective was to identify a soil 
moisture-based agricultural drought index that is (i) strongly 
related to crop-yield anomaly across networks with differing soil 
moisture sensing technologies, (ii) comparable across time and 
space, and (iii) readily understandable. We evaluated a variety 
of indices including soil matric potential (MP), a fundamental 
measurement of soil moisture status; soil water storage (SWS), 
data for which is generally more widely available and under-
stood; and fraction of available water capacity (FAW), which 
incorporates the impact of soil physical properties on soil water 
availability. Each index was evaluated before and after climato-
logical or statistical standardization. Relationships with yield 
were assessed by correlating crop-yield anomaly in Oklahoma 
and Texas with drought index values at the county level. For 
maximum temporal and spatial comparability, drought indices 
should be absent of seasonality and able to represent agricultural 
drought across wet and dry regions. Temporal comparability 
was assessed by quantifying the autocorrelation of the candidate 
indices, and the strong climate gradient across our study area 
allowed us to assess spatial comparability of the indices. This 
work is directed toward overcoming the obstacles that currently 
limit the use of in situ soil moisture for agricultural drought 
monitoring where long-term in situ soil moisture data are avail-
able, and our methodology presents a framework by which these 
or other indices can be evaluated worldwide.

METHODS
Study Area

The availability of long-term, in situ soil moisture data from 
the Oklahoma Mesonet, which began intensive soil moisture 
monitoring in 1994 (McPherson et al., 2007), and the West 
Texas Mesonet, which began in 1999 (Schroeder et al., 2005), 
make this part of the southern Great Plains ideal for our study. 
The Oklahoma and West Texas Mesonet systems are two of the 
most densely measured, large-scale soil moisture monitoring 
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networks in the world, contiguously covering all of Oklahoma 
and most of the Texas Panhandle (Fig. 1) and having a total 
area of around 274,900 km2 (Ochsner et al., 2013). Currently, 
soil moisture in Oklahoma is recorded at more than 100 sta-
tions at the 5- and 25-cm depths, with 76 of those stations also 
having long-term soil moisture data records at the 60-cm depth 
(McPherson et al., 2007). Soil moisture is measured at 5, 20, 60, 
and 75 cm at 75 stations by the West Texas Mesonet. These net-
works span a diversity of climate conditions, with precipitation 
increasing from west to east and temperature increasing from 
north to south across the study area (PRISM Climate Group, 
2017). The climate is primarily semiarid in the Texas portion of 
the study area and temperate over most of Oklahoma (Peel et 
al., 2010). Annual average precipitation (1981–2010) varies from 
less than 400 mm in the southwestern Texas Panhandle to more 
than 1500 mm in eastern Oklahoma (PRISM Climate Group, 
2017). Temperature varies roughly from northwest to southeast, 
with an annual average of about 12°C in northwest Oklahoma 
to about 18°C in southeast Oklahoma.

Crop Yield

Soil moisture-yield relationships were assessed at the county 
level using annual yield data for wheat, cotton, and non-alfalfa 
hay from 2000 to 2016 in Oklahoma and 2002 to 2016 in Texas 
(USDA-NASS, 2017a). Oklahoma ranks second nationally for 
winter wheat production and third for non-alfalfa hay produc-
tion (USDA-NASS, 2017b). In 2012, wheat accounted for 52% 
of harvested area in Oklahoma, and hay accounted for 32% 
(USDA-NASS, 2014a). Texas is the top cotton producing state 
in the United States (USDA-NASS, 2017b), with the majority 
of Texas production in the panhandle region that is covered 
by the West Texas Mesonet (USDA-NASS, 2014b). In 2012, 
cotton accounted for about 42% of harvested area in the Texas 
Panhandle, while wheat accounted for 23% (USDA-NASS, 

2014b). Because wheat is important in both Oklahoma and 
West Texas, cross-state comparisons of soil moisture-yield rela-
tionships were possible for this crop.

We used yield data from non-irrigated land when possible. In 
Texas, non-irrigated yield data were available for wheat and cot-
ton, but in Oklahoma, separate irrigated and non-irrigated yield 
data for these crops were available only for the years 2000 to 
2009. For hay in Oklahoma, separate irrigated and non-irrigated 
yield data were not available for any part of the study period. We 
used several strategies to overcome this limitation. For wheat, 
irrigated and non-irrigated yield data from 2000 to 2009 were 
used to identify counties where irrigated wheat production was 
most common. Irrigated wheat accounted for more than 5% of 
total wheat production in only three Oklahoma counties, and 
these were excluded from further analysis. The proportion of 
irrigated cotton was relatively high in all major cotton producing 
counties in Oklahoma, ranging from 12 to 75% of total produc-
tion. Cotton was therefore excluded from further analyses for 
Oklahoma. For hay, we assumed that irrigated hay was only 
a small part of total production and proceeded with data as 
received. This assumption was supported by 2012 Agricultural 
Census data that indicated that less than 2% of non-alfalfa hay 
produced in Oklahoma was irrigated (USDA-NASS, 2014a). 
Annual county-level hay yield is not recorded in Texas.

Counties were included in soil moisture-yield analyses only 
if the yield data record was at least 50% complete. For counties 
that met this threshold, as well as an additional soil moisture 
data completeness threshold described below, county-level yield 
data completeness in Oklahoma from 2000 to 2016 was 91% 
for wheat and 80% for hay (Table 1). Likewise, in Texas from 
2002 to 2016, data completeness was 64% for wheat and 80% 
for cotton. For retained counties, yield values were converted 
to yield anomalies by subtracting average yield for the period 
of our study from each annual value. Example time series of 

Fig.	1.	Map	of	the	study	area	including	locations	of	Oklahoma	Mesonet	and	some	West	Texas	Mesonet	stations	as	well	as	wheat,	grass/pasture,	
and	cotton	land	cover	in	Oklahoma	and	part	of	Texas	in	2016.	Inset	shows	the	location	of	the	study	area	inside	the	continental	United	States.
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yield anomalies for Payne County Oklahoma, which contains 
the Marena Mesonet site (Fig. 1), and Lubbock County, Texas, 
which contains the Reese Center Mesonet site (Fig. 1), can be 
seen in Fig. 2. The Mann-Kendall test for trend (Mann, 1945) 
was applied to yield data for each retained county-crop combi-
nation. Of the 137 county-crop combinations (Table 1), crop 
yield showed a significant trend for only 6 combinations, and 
therefore no detrending procedure was applied.

Soil Moisture

In situ soil moisture data were obtained from the Oklahoma 
Mesonet Daily Data Retrieval webpage (https://www.mesonet.
org/index.php/weather/daily_data_retrieval) and from the 
West Texas Soil Moisture webpage (http://www.mesonet.ttu.
edu/WeatherData.html). We chose to construct our agricul-
tural drought indices using in situ rather than satellite derived 
soil moisture data because the in situ data were available for 
multiple depths within the plant root zone, whereas satellite 
data are limited to the near soil surface. However, we recognize 
that remotely sensed soil moisture data can form the basis of 
effective agricultural drought indices (Martínez-Fernández et 
al., 2016; Mishra et al., 2017), may be an important alternative 
in regions without large-scale in situ data, and may be comple-
mentary where both in situ and remotely sensed data are avail-
able. Data from the Oklahoma Mesonet are from 1996 to 2016 
and those from the West Texas Mesonet are from 2002 to 2016. 
The retrieved data were daily averages of soil moisture recorded 
under vegetation every 30 min by the Oklahoma Mesonet or 
every 15 min by the West Texas Mesonet. While not crop spe-
cific, these data instead offer a general accounting of soil mois-
ture conditions. In this way, the data are somewhat similar to 
satellite-based soil moisture measurements, which are an aggre-
gate measurement across a variety of land use types (Martínez-
Fernández et al., 2016). It is important to note that because soil 
moisture data were collected under natural vegetation, they 
may not quantitatively reflect soil moisture under crops during 
parts of the year. This discrepancy is likely most pronounced 
for wheat because of the marked temporal differences in water 
use between it and natural vegetation (Patrignani and Ochsner, 
2018). Therefore potentially weaker soil moisture-yield rela-
tionships may exist for this crop than for hay and cotton. On 
the other hand, there is likely little discrepancy between soil 
moisture under hay and measured soil moisture under grassland 
vegetation at the monitoring sites because of the similar growth 
patterns of these land cover types. Furthermore, the water use 
pattern of cotton in the Texas Panhandle (Chen et al., 2015, 
2018) is similar to that we observed under natural vegetation at 
West Texas Mesonet Sites. Soil moisture shows rapid depletion 

during late spring and early summer before reaching a mini-
mum in late summer, although soil moisture depletion in cotton 
may lag that in grassland (Chen et al., 2015).

Data from the Oklahoma Mesonet were received as refer-
ence temperature difference (Illston et al., 2008) measured 
using heat dissipation sensors (Model 229, Campbell Scientific 
Inc., Logan, UT) at the 5- and 25-cm soil depths. Reference 
temperature difference was used to calculate matric potential 
(MP), which in turn was used to calculate volumetric soil water 
content (SWC), and finally fraction of available water capacity 
(FAW). Data from the West Texas Mesonet were received as 
SWC (Schroeder et al., 2005) at the 5- and 20-cm depths. SWC 
was measured using a water content reflectometer (Model 615-
L, Campbell Scientific Inc., Logan, UT), the output of which 
is converted to soil water content based on a calibration equa-
tion unique to each site and measurement depth. For the West 
Texas Mesonet, it was not possible to calculate MP because of 
the underlying soil moisture measurement technique, and the 
absence of the necessary soil physical property information 
precluded us from calculating FAW.

For Oklahoma, reference temperature difference was con-
verted to MP using a known calibration function (Illston et al., 
2008). Matric potential was then converted to SWC using soil 
water retention parameters obtained from the Rosetta pedo-
transfer function based on soil physical properties measured on 
samples collected at each Mesonet station (Scott et al., 2013). 
The soil water retention parameter database (MesoSoil v. 1.3) is 
available from the Dep. of Plant and Soil Sciences at Oklahoma 
State University (http://soilphysics.okstate.edu/data/). The 
SWC was then used to calculate plant available water (PAW) as:

PAW = (θ − θWP)d  [1]

where θ is measured SWC, θWP is SWC at the permanent wilt-
ing point, and d is the thickness (mm) of the layer represented 
by the measurement. The FAW was next calculated by normal-
izing PAW as the ratio of PAW to maximum possible PAW, or 
available water capacity (AWC), as:

FAW = (θ − θWP)/(θFC − θWP)  [2]

where θFC is volumetric water content at field capacity. For 
calculations of PAW and FAW, we defined permanent wilting 
point as the volumetric water content corresponding to a matric 
potential of –1500 kPa (Scott et al., 2013) and, based on visual 
inspection of matric potential data, we defined field capacity as 
the volumetric water content corresponding to a matric poten-
tial of –10 kPa. Our preliminary soil moisture-yield anomaly 
analyses included MP, SWC, PAW, SWD, and FAW, but PAW 
and SWD showed no clear benefit over the other indices and 
were excluded from further analyses.

Stations recording soil moisture were retained in the analysis 
if the data record from 2000 through 2016 for the Oklahoma 
Mesonet or from 2002 through 2016 for the West Texas Mesonet 
was at least 80% complete, which resulted in 83 and 30 retained 
sites for the Oklahoma Mesonet and West Texas Mesonet, 
respectively. For counties with multiple soil moisture stations 
meeting this 80% data completeness threshold, daily county-level 
averages were calculated. To estimate how well our point-scale 

Table	1.	Summary	of	the	county	level	crop	yield	data	completeness	
(USDA-NASS,	2017a)	for	wheat,	hay,	and	cotton	in	Oklahoma	
from	2000	to	2016	and	the	Texas	Panhandle	from	2002	to	2016.

State Crop
Number	 
of	counties

Number	 
of	years n

Data	 
completeness,	%

Oklahoma
Wheat 46 17 714 91

Hay 58 17 792 80
Texas	Panhandle

Wheat 13 15 125 64
Cotton 20 15 242 80
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soil moisture data represented soil moisture across a wider area, 
we calculated the Pearson correlation coefficient of daily SWS-
anomaly at each station in Oklahoma with all other stations from 
2000 to 2016, and similarly in the Texas Panhandle from 2002 to 
2016. For each state, correlation coefficients were then compared 
to the distance between stations, and a line was fit to the coeffi-
cient-distance pairs following the method of Rico-Ramirez et al. 
(2015). In Oklahoma, we found that at distances of 25 and 50 km, 
the fitted correlation coefficients were 0.74 and 0.65. Likewise, in 
the Texas Panhandle, fitted correlation coefficients were 0.51 and 
0.47 at these distances. For context, stations in the Oklahoma and 
West Texas Mesonet systems each represent an area of about 1681 
km2, or a square area with sides of about 41 km (Ochsner et al., 
2013). Based on our observed correlation between stations at this 
spatial scale, we concluded that the point-scale soil moisture data 
from these networks were generally correlated with soil moisture 
conditions across surrounding areas. However, we also recognize 
that soil moisture is heterogeneous at scales as small as meters 
(Famiglietti et al., 2008), and that the soil moisture data in our 
analyses did not account for this fine scale variability.

Soil moisture for each network was integrated across a soil 
depth of 0 to 40 cm by calculating depth-weighted averages 
of sensors in this soil layer. Depth weighting was necessary 
because soil moisture measurements from the networks in our 
study, like other major networks (Quiring et al., 2016), are not 
evenly distributed throughout the soil profile. In Oklahoma, 
for example, in situ measurements at 5 cm are at the midpoint 
of the 0- to 10-cm soil layer, and measurements at 25 cm are 
the midpoint of the 10- to 40-cm soil layer. Therefore, each 
measurement represented a different volume of soil. To account 
for this, data recorded at 5 cm were weighted 0.25 and those at 
25 cm (Oklahoma Mesonet) or 20 cm (West Texas Mesonet) 
were weighted 0.75 to obtain depth-weighted average SWC. 
Depth weighted MP and FAW were calculated similarly. Depth-
weighted average SWC in the 0- to 40-cm layer was then mul-
tiplied by 400 to obtain soil water storage (SWS) in mm. Each 
index was assessed as a daily value, a daily value relative to soil 
moisture climatology (anomaly), and a daily value standardized 
using statistical techniques. After calculating the anomaly and 
statistically standardized values, the 1-wk moving average of each 

Fig.	2.	Annual	crop-yield	anomaly	and	soil	water	storage	(SWS)-anomaly	for	Payne	County,	Oklahoma	from	2000	to	2016	and	Lubbock	
County,	Texas	from	2002	to	2016.
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index was calculated as the average of the 7-d period ending on 
the current day. This timescale was chosen to capture important 
intra-monthly variation in soil moisture conditions that can be 
obscured by drought indices averaged over longer periods (Zhang 
et al., 2017). We were left with the following nine indices: MP, 
MP-anomaly, statistically standardized MP (MPS), SWS, SWS-
anomaly, statistically standardized SWS (SSWS), FAW, FAW-
anomaly, and statistically standardized FAW (SFAW). Of these, 
only those based on soil water content (SWS, SWS-anomaly, and 
SSWS) were available for the Texas Panhandle.

Soil moisture anomalies are important for drought monitor-
ing because they represent soil moisture relative to normal levels 
for a specific time of year (Quiring et al., 2016) and therefore 
can account for soil moisture seasonality (Illston et al., 2004). 
We calculated daily anomalies by subtracting the long-term 
average value for each day of year from the daily values. For 
the Oklahoma Mesonet, average values were calculated for the 
1996 to 2016 period, and for the West Texas Mesonet, aver-
age values were calculated for 2002 to 2016. The length of the 
21- and 15-yr periods are in line with previous work where soil 
moisture anomalies were calculated (Quiring et al., 2016; Wu 
et al., 2002). Example time series of SWS-anomaly for Payne 
County, Oklahoma and Lubbock County, Texas are provided in 
Fig. 2. For statistical standardization, we followed the three-step 
procedure described by Carrão et al. (2016). With this approach, 
an empirical probability distribution function (ePDF) of daily 
values at each station was first produced using a kernel density 
estimator (KDE) (Silverman, 1986). Next, the empirical prob-
ability of each daily value was translated onto the normal cumu-
lative distribution function curve to estimate the cumulative 
probability of each daily value. Finally, this cumulative prob-
ability was transformed to the standard normal value (mean = 0, 
variance = 1) for each drought index: SMP, SSWS, and SFAW. 
We chose to fit an empirical PDF to soil moisture data because it 
does not presuppose the form of the distribution of soil moisture 
data (Carrão et al., 2016), and because it is less susceptible to bias 
problems associated with small sample sizes (Sienz et al., 2012).

In step 1 of the statistical standardization procedure, the 
ePDF was fit to daily soil moisture data using a kernel density 
estimator (KDE). A unique ePDF was developed for each day 
of the year and soil moisture measurement location. For each 
station, the daily ePDF was based on 21 soil moisture values in 
Oklahoma (one for each year from 1996–2016) and 15 values in 
the Texas Panhandle (2002–2016), sample sizes that we deter-
mined to be large enough to create a stable sample distribution. 
Ford et al. (2016) previously reported 3 to 6 yr of soil moisture 
data were required to create stable sample distributions for 
daily soil moisture data aggregated to the monthly timescale. 
Because our data were at the daily timescale, we expected that 
a somewhat longer data record would be needed to create a 
stable sample distribution. We applied the method of Ford et 
al. (2016) to our daily data and found that, averaged across each 
station and day of the year, approximately 11 yr of data were 
required. We therefore concluded that the data record lengths 
in our study were sufficient to produce reliable ePDFs.

For a sample of x1, x2, x3, …, xn, the KDE used to construct 
the ePDF is:

1

1ˆ( )
n i
i

x xf x K
nh h=

− =  
 

∑  [3]

where K is the kernel, and h is the smoothing parameter, or 
bandwidth. The KDE depends only mildly on the form of K 
(Liao et al., 2010), and as is usually done (see Silverman, 1986), 
we defined K as the normal probability density function:
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On the other hand, the KDE depends critically on the value 
of h (Liao et al., 2010). Because using a single bandwidth applied 
across the entire sample distribution creates KDEs that are vul-
nerable to noise in parts of the distribution where data are sparse 
(e.g., distribution tails) (Salgado-Ugarte et al., 1993), we instead 
used the variable bandwidth method described by Shimazaki and 
Shinomoto (2010). With this method, the bandwidth was smaller 
in parts of the distribution where data were dense and longer 
where data were sparse. The result is retention of fine details in 
dense regions of the data distribution and the elimination of spu-
rious peaks in the final density estimate where data are sparse.

For each station and day, we calculated the bandwidth for 
4096 equally spaced points on the interval of the minimum 
and maximum soil moisture values for that day. At each point, 
the optimal bandwidth was obtained by iteratively computing 
optimal fixed-size bandwidths for the local interval, with the 
optimization based on a principle of minimizing the expected 
least squares error loss function between the kernel estimate and 
an unknown underlying density function (Shimazaki, 2017). 
After bandwidth optimization, the KDE was calculated at each 
point, from which the KDE for each daily soil moisture value 
was obtained and the ePDF constructed (step 1). Then the ePDF 
was translated onto the normal cumulative distribution function 
(step 2), which was finally transformed to the standard normal 
value for each drought index: SMP, SSWS, and SFAW (step 3). 
SSWS is analogous to SPI (McKee et al., 1993) in that its units 
are in standard deviations and its range is from approximately –3 
to 3. A value of –1 corresponds with a cumulative probability of 
15.9%, and with similarly standardized indices, this value is often 
the threshold value for moderate drought (Carrão et al., 2016).

Statistical Analysis

Soil Moisture-Yield Anomaly Relationships
The relationship between soil moisture conditions, repre-

sented by each of nine drought indices, and county level crop-
yield anomaly was assessed using Pearson’s linear correlation. 
For each combination of drought index and crop, the correla-
tion between daily soil moisture and county level yield anomaly 
was calculated for each day of the 1-yr period ending at the 
typical harvest date for that crop. For example, the most active 
period of wheat harvest in Oklahoma is from 6 June to 27 June 
and in Texas is from 1 June to 3 July (USDA-NASS, 2010). We 
therefore defined the “crop year” for wheat as the period from 
1 July through 30 June. Soil moisture on 1 July of each year in 
the study period was then correlated with wheat yield anomaly 
for that crop year, followed by soil moisture on 2 July, and so on 
until a time series of 365 correlation coefficients was obtained. 
In Oklahoma, each correlation was based on up to 17 soil mois-
ture-yield anomaly pairs (one for each year from 2000–2016), 
whereas up to 15 pairs were correlated for the Texas Panhandle 
(2002–2016). The maximum correlation coefficient and the day 
of year on which it occurred were recorded, and the analysis was 
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repeated for all counties. For wheat, for example, there were 59 
counties in Oklahoma and Texas with sufficient soil moisture 
and crop yield data for this analysis (Table 1), and therefore 59 
maximum correlation coefficients for each drought index.

The correlation analysis was repeated for cotton and hay, 
with the crop year for cotton defined as 1 January through 
31 December and that for hay as 1 October through 
30 September. Using the maximum daily correlation coef-
ficients recorded for each county, the performance of each 
drought index was compared using analysis of variance 
(ANOVA) with multiple comparison (P ≤ 0.05). Continuing 
with the wheat yield anomaly example, the ANOVA compared 
the 59 maximum correlation coefficients recorded for each 
drought index. Prior to ANOVA, correlation coefficients were 
submitted to Fisher’s z-transformation (Fisher, 1921):

1
0.5 ln

1
rz
r

+ ′ =  − 
 [5]

The transformation was necessary because the sampling distri-
bution of the correlation coefficient is non-normal (Lane et al., 
2016). Throughout the manuscript, any mention of average cor-
relation coefficients or statistical procedures applied to correlation 
coefficients refers to values that were transformed, averaged, and 
then back transformed. Maps displaying correlation strength were 
used to demonstrate the spatial variability of the soil moisture-
yield anomaly relationship, with maximum correlation coef-
ficients between SWS-anomaly and yield anomaly of each crop 
displayed for counties meeting data completeness requirements.

Temporal Comparability of Drought Indices
Time-series plots of correlation coefficients were used to 

highlight the temporal variability of soil moisture-yield anomaly 
relationships. The time series was constructed by calculating the 
average and standard deviation of county-specific correlation 
coefficients between SWS-anomaly and crop-yield anomaly for 
each day of the crop year. Only counties where soil moisture-
yield anomaly relationships were significant were included. 
Further assessment of the temporal variability was conducted 
using autocorrelation with lags of up to 1825 d. The significance 
of autocorrelation is generally assessed as ±2/n0.5, where n is 
sample size (Dente et al., 2013). Because the sample size for our 
soil moisture time series were large, the correlation coefficient 
corresponding to significant autocorrelation was as low as 0.03. 
Autocorrelation values at this level are unlikely to be of practi-
cal importance, but values as low as 0.2 to 0.5 may be useful for 
anticipating future conditions (Walsh et al., 2005). We there-
fore used r = 0.2 as the threshold for important autocorrelation.

Spatial Comparability of Drought Indices
Unlike for the initial correlation analysis where soil moisture-

yield anomaly data pairs were correlated individually for each 
county, to assess the ability of each index to represent agricultural 
drought across space, soil moisture-yield anomaly data pairs from 
all counties were combined into a single correlation analysis. For 
example for wheat, there were up to 839 soil moisture-yield anom-
aly pairs in the single correlation analysis (46 Oklahoma counties 
× 17 yr × 91% data completeness + 13 Texas counties × 15 yr × 
64% data completeness). The calculation was performed for 
each crop. Differences between drought indices were identified 

by comparing the 90% confidence intervals on correlation coef-
ficients for each drought index-crop combination. The 90% 
confidence interval was chosen to more easily detect differences 
between indices, albeit at increased risk of incorrectly identify-
ing differences compared with using a 95% confidence interval. 
Confidence intervals were calculated by submitting correlation 
coefficients to Fisher’s z transformation to obtain zʹ, which is 
normally distributed and has a standard error of:

1
3z n

s ′ = −
  [6]

where n is the sample size. Confidence intervals were calculated as:

   zz z s ′′ ± ⋅  [7]

where z is 1.645 (Lane et al., 2016) and then back-transformed 
for comparison. All statistical analyses were conducted with 
Matlab R2018a (MathWorks, Inc., Natick, MA).

RESULTS
Soil Moisture-Yield Anomaly Correlation

Soil moisture is the central variable by which agricultural 
drought is defined, but the relationships between measured soil 
moisture and drought impacts remain understudied, and there 
is no consensus regarding how to best formulate soil moisture-
based drought indices. We calculated the daily county-level cor-
relation of each of three drought indices, as well as their anomaly 
and statistically standardized values, with wheat, hay, and cotton 
yield anomalies and found that county-level yield anomaly was 
positively related to soil moisture for all indices. For a given crop, 
the correlation strength for all indices and in all forms (raw val-
ues, anomalies, and statistically standardized) was similar, sug-
gesting that at the county level, the differing formulations and 
standardizations of these candidate drought indices did not affect 
the strength of relationship with crop-yield anomaly. The maxi-
mum correlation averaged across counties and indices was 0.66 
for wheat, 0.76 for hay, and 0.76 for cotton. Thus, yield anomalies 
of warm-season cotton were more strongly correlated (P ≤ 0.05) 
with soil moisture conditions than were the yield anomalies of 
cool-season winter wheat. Hay may include both warm- and cool-
season species. The lower average correlation for wheat may result 
from the fact that soil moisture measured under grassland veg-
etation as in our study does not accurately represent that under 
winter wheat (Patrignani and Ochsner, 2018).

For wheat, the strength of the soil moisture-yield anomaly 
relationship generally decreased from west to east, with cor-
relation coefficient values >0.74 for most counties in the Texas 
Panhandle and >0.48 for most counties in western Oklahoma 
(Fig. 3). Note that while Fig. 3 (as well as Fig. 4, discussed in 
the following paragraph) displays results for SWS-anomaly, for 
discussion we use the general term “soil moisture” since within-
county results were similar for each index we considered. The 
spatial pattern in correlation strength follows a trend of generally 
increasing precipitation and decreasing evaporative demand from 
west to east across the study area (Lollato et al., 2017). Wheat 
yields in Oklahoma are generally not water limited when grow-
ing season precipitation is greater than 400 mm (Patrignani et 
al., 2014), which occurs roughly east of 98° W longitude. Here, 
temperature is a more likely environmental driver of wheat yield 
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(Lollato et al., 2017), and therefore wheat yield anomalies were 
not highly correlated with soil moisture in this region.

Because of the unique water requirements of each of the crops 
in our study, it is not surprising that the timing of peak soil mois-
ture-yield anomaly correlation varied by crop (Fig. 4). For wheat, 
the dominant cool season crop in the region, the soil moisture-
yield anomaly relationship was highest around 25 March, 
which roughly corresponds with the period when most wheat 
in Oklahoma is undergoing stem elongation (USDA-NASS, 
2016a) and when soil moisture under wheat typically begins a 
period of rapid decline (Patrignani and Ochsner, 2018). Given 
the similar temporal pattern of wheat development in Oklahoma 
and Texas (USDA-NASS, 2016b, 2016c), this likely also holds 
true for Texas. This finding corroborates previous work reporting 
that stem elongation is a critical period for drought induced yield 
losses in wheat (Salter and Goode, 1967). In Oklahoma, the 10- 
to 40-d period after winter dormancy (approximately the month 
of March) is known to be of critical importance for wheat yield 
determination (Raun et al., 2001), and field-scale wheat yield 
predictions have been improved by incorporating in situ soil 
moisture measured during this time (Walsh et al., 2013).

Where wheat production is water limited, our findings sug-
gest that soil moisture may be a useful tool for key early-spring 
management decisions. For example, unfavorable soil moisture 
conditions may discourage producers from spring nitrogen 
fertilizer application, which occurs in February and March in 
Oklahoma for split nitrogen systems (Mohammed et al., 2013). 
Likewise, soil moisture information may be valuable in dual-
purpose wheat systems, where wheat is grazed by cattle during 
its vegetative stages before their removal for production of a 
wheat grain crop. The optimal time for cattle removal is at the 
initiation of wheat stem elongation, or first hollow stem, which 
often occurs around the first week of March (Taylor et al., 2015). 
Unfavorable soil moisture conditions at this time may encour-
age producers to “graze-out” the wheat crop and forego any 
potential grain production.

For hay, the soil moisture-yield anomaly relationship did not 
display clear spatial patterns, with correlation coefficient values 
>0.48 for all but two counties in Oklahoma (Fig. 3). The absence 
of a spatial pattern in correlation strength suggests that hay yield 
is limited by available soil moisture throughout the state, which 
may be a reflection of the timing of the peak soil moisture-yield 
anomaly relationship strength. This summer peak in correla-
tion strength, which was from 21 June through 11 July (Fig. 4), 
suggests that hay’s demand for soil moisture is greatest at a time 
when soil moisture is generally below the threshold for moisture 
stress in plants in Oklahoma (Krueger et al., 2016). This is in 
contrast to wheat, where the impact of soil moisture on yield was 
greatest during a time when soil moisture is generally high.

While correlation strength peaked during the summer, the 
soil moisture-hay yield anomaly correlation was statistically 
significant during most months from December through July 
(Fig. 4). Unlike wheat and cotton, for which yield is from a single 
plant species, hay yield represents the combined yields of warm 
and cool season perennial and annual species (Arnall et al., 
2017), and therefore the timing of peak correlation was not as 
distinct for hay as the other crops. Each species has unique yield 
distribution characteristics (Hancock et al., 2014; Rogers et al., 
2012) that contribute to a long harvest season beginning in April 
and proceeding through October (USDA-NASS, 2010). Hay 
from cool season species can account for a substantial part of 
total hay production, with, for example, small grain hay account-
ing for 20% of non-alfalfa hay production in Oklahoma in 
2012 (USDA-NASS, 2014a). The secondary peak in correlation 
strength ending around mid-February may be a reflection of the 
influence of soil moisture on small grain hay yield.

For cotton, the primary warm season crop in the region, there 
was no apparent spatial pattern in soil moisture-yield anomaly 
correlation strength (Fig. 3). Correlation coefficient values were 
>0.74 for most counties in the Texas Panhandle. As with hay, the 
absence of spatial patterns in correlation strength indicates that 
cotton production is limited by water availability throughout 
this region. The soil moisture-yield anomaly relationship was 
significant or nearly significant from February through May, 
with a peak value of 0.65 on 18 March (Fig. 4). There remains 
some debate regarding the most critical period for drought stress 
in cotton, but the flowering period, approximately July through 
mid-August, is generally agreed to be critical (Loka et al., 2011; 
Salter and Goode, 1967). We found soil moisture was poorly 
related to cotton yield anomaly after May, with a maximum 

Fig.	3.	Correlation	between	soil	water	storage	anomaly	(SWS-
anomaly)	and	wheat,	hay,	or	cotton	yield	anomaly	for	individual	
counties	in	Oklahoma	(2000–2016)	and	the	Texas	Panhandle	
(2002–2016).	Correlation	coefficients	(r)	are	for	the	day	of	year	
on	which	r	was	greatest,	which	varied	by	county.	White	colored	
counties	were	excluded	from	the	analysis	because	of	insufficient	
soil	moisture	or	yield	data.	For	wheat,	correlation	strength	
generally	decreased	from	west	to	east,	roughly	corresponding	
with	the	spatial	gradient	of	average	annual	precipitation	across	
the	region,	which	increase	from	west	to	east.



Agronomy	 Journa l 	 • 	 Volume	111,	 Issue	3	 • 	 2019	 9

correlation coefficient of 0.42 during the typical flowering period. 
Instead, we found that the critical period occurred before cot-
ton planting, which is generally between 15 May and 20 June in 
the Texas Panhandle (Warrick et al., 2002). Several factors may 
account for this finding. Adequate soil moisture at planting is 
known to help ensure uniform cotton stands and encourage deep 
root growth (Warrick et al., 2002). High soil moisture at planting 
also provides water for early season growth and may make cotton 
plants less susceptible to later drought stress. It should also be 
noted that West Texas Mesonet soil moisture data are collected 
under natural vegetation and may not reflect soil moisture under 
cotton, with soil moisture depletion under cotton lagging that in 
grassland (Chen et al., 2015). It is possible that this mismatch in 
crop water use accounts for the absence of significant correlation 
during July and August. Regardless of the explanation, our find-
ing that soil moisture levels before cotton planting influence yield 
may have important management implications. Data currently 
available through the West Texas Mesonet may cue producers 
to assess conditions in individual fields and adjust planting and 
other management decisions accordingly.

Soil Moisture Temporal and Spatial Comparability

It is essential that an agricultural drought index reflect the 
potential impacts of drought on crop yield, and our initial 
analyses showed that the indices we assessed did this equally well 
at the county level. For regional-level application, however, an 
agricultural drought index must also represent drought similarly 
throughout the year and across differing climates. To assess the 
temporal comparability of the drought indices, we compared soil 
moisture time series and correlograms for soil moisture values 
(SWS) and standardized soil moisture (SWS-anomaly and 
SSWS). In locations such as central Oklahoma where annual 
precipitation is relatively high and follows a seasonal cycle, SWS 
showed distinct seasonality (Fig. 5a), whereas seasonality was less 
pronounced in the drier Texas Panhandle (Fig. 5b). Seasonality 
was removed by standardizing SWS, either by calculating its 
anomaly (Fig. 6c) or through statistical standardization (Fig. 6e). 
Standardization also improved spatial comparability, with stan-
dardized indices showing consistently stronger correlation with 
crop-yield anomaly when data from all counties were combined 
into a single regional-level correlation analysis (Fig. 7).

Fig.	4.	Average	correlation	between	SWS-anomaly	and	wheat,	hay,	or	cotton	yield	anomaly	for	counties	in	Oklahoma	(2000–2016)	and	
the	Texas	Panhandle	(2002–2016).	The	black	line	represents	the	across-county	average	correlation	coefficient	(r)	for	each	day	of	year	
for	counties	with	significant	soil	moisture-yield	anomaly	relationships,	and	the	shaded	area	around	each	line	represents	one	standard	
deviation.	The	dashed	lines	are	the	limits	of	significant	correlation	(P	≤	0.05),	which	varied	by	crop	because	the	number	of	counties	in	the	
analysis	varied	(n	=	47	for	wheat,	57	for	hay,	and	18	for	cotton).
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We first assessed the temporal comparability of indices with 
and without standardization by comparing time series of daily 
mean SWS, SWS-anomaly, and SSWS at the Marena Oklahoma 
Mesonet station near Stillwater, Oklahoma, and the Reese 
Center West Texas Mesonet station near Lubbock, Texas (Fig. 5). 
These sites lie near the southwestern and northeastern eastern 
edges of the wheat production area in our study (Fig. 1), and have 
markedly different annual precipitation, with the Reese Center 
station receiving 513 mm and the Marena station receiving 924 
mm (PRISM Climate Group, 2017). Maximum and minimum 
soil water storage at these sites is similar (Fig. 5a and b), although 
soil at the Reese Center site is a lighter texture (sandy loam) 
(NRCS, 2017) compared with the Marena site (loam). Average 
SWS for each day of the year at the Marena site demonstrated a 
seasonal cycle (Fig. 5a) that is typical of soil moisture throughout 
Oklahoma (Illston et al., 2004), where soil moisture is depleted 
during the summer and recharged during the fall and winter 
(Krueger et al., 2016). At the Marena site, SWS often averaged 
more than 125 mm, near the maximum value of 141 mm for this 
site, and reached a low near 73 mm in the summer. In contrast, 
this seasonal cycle was less apparent at the Reese Center site, with 
average SWS for each day of the year only ranging from a low of 
55 mm in late summer to a high of 82 mm late winter (Fig. 5b).

The seasonality of SWS observed at the Marena site was 
removed by standardization, with average values of SWS-
anomaly and SSWS near zero each day of the year (Fig. 5c 
and e). However, the standardized indices (SWS-anomaly 
and SSWS) displayed different patterns in the distribution of 
their values throughout the year, with SWS-anomaly (Fig. 5c) 

showing a variable distribution and SSWS (Fig. 5e) having 
a distribution that was relatively constant. For example, the 
distribution of SWS-anomaly at the Marena site, represented 
by 10th and 90th percentile values, is relatively narrow during 
the winter and spring and is wide during summer. This pattern, 
also evident for SWS, indicates soil moisture conditions that 
are usually wet during the winter and highly variable during 
the summer. In contrast, at the Reese Center site, soil moisture 
distribution is relatively wide most of the year, but more narrow 
during the summer (Fig. 5d), a pattern suggestive of generally 
dry conditions during the summer and variable conditions at 
other times. Average daily SWS and SWS-anomaly were almost 
always nearer the 10th percentile than the 90th at the Reese 
Center site, which is indicative of soil moisture climatology that 
is predominantly dry with occasional wet periods. These tem-
poral patterns in the distribution of the soil moisture data were 
generally absent from the SSWS time series (Fig. 5f) because 
the statistical standardization procedure involves transforming 
measured soil moisture into a standard normal value.

To more rigorously assess these seasonal patterns, we next cal-
culated the autocorrelation time series of SWS, SWS-anomaly, 
and SSWS for the Marena and Reese Center sites. The seasonal-
ity that was apparent for SWS at the Marena site was manifested 
as a sinusoidal pattern of autocorrelation (Fig. 6a). Correlation 
coefficient values were greater than 0.2 or less –0.2 at 1-yr inter-
vals, with autocorrelation persisting at least 5 yr. Autocorrelation 
was removed through standardization, with the autocorrela-
tion coefficient permanently falling below 0.2 after 54 d for 
SWS-anomaly (Fig. 6c) and 92 d for SSWS (Fig. 6e). At the 

Fig.	5.	Time	series	of	soil	water	storage	(SWS),	SWS-anomaly,	and	standardized	SWS	(SSWS)	for	the	Marena	Oklahoma	Mesonet	station	
near	Stillwater,	Oklahoma	from	2000	to	2016	and	the	Reese	Center	West	Texas	Mesonet	station	near	Lubbock,	Texas	from	2002	to	
2016.	The	solid	black	lines	represent	mean	values	for	each	day	of	the	year,	and	the	shaded	region	is	the	area	between	10th	and	90th	
percentile	values.	For	SWS,	maximum	and	minimum	values	are	represented	by	dashed	lines.	Soil	moisture	at	Marena	shows	strong	wet	
and	dry	seasonality	(a),	while	at	Reese	Center,	soil	moisture	is	generally	low	and	punctuated	by	irregular	high	periods	(b).
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Reese Center site, where seasonality was absent from the SWS 
time series (Fig. 5b), the sinusoidal pattern was also absent, and 
autocorrelation fell below 0.2 after 79, 85, and 109 d for SWS, 
SWS-anomaly, and SSWS, respectively (Fig. 6b, d, and f). The 
high degree of autocorrelation for SWS that we observed is con-
sistent with previous work in Oklahoma (Dente et al., 2013), and 
its removal through standardization is ideal for inter-seasonal 
drought monitoring (Narasimhan and Srinivasan, 2005).

We found that standardized indices were also more effec-
tive than non-standardized indices for monitoring agricultural 
drought across differing climates. Unlike for the county level 
analysis where all drought indices were similarly related to crop-
yield anomaly, when soil moisture and yield anomaly data for all 
counties were combined into a single regional-level analysis, the 
standardized indices were more strongly related to crop-yield 
anomaly than non-standardized indices (Fig. 7). There was also 
a general tendency toward stronger correlation for statistically 
standardized indices than anomalies, although the difference was 
significant for only MP-anomaly and SMP. On the other hand, 
the formulation of the index (i.e., MP, SWS, or FAW) did not 
matter for a given standardization procedure (anomaly or statisti-
cal) and crop. This is an important result because, for example, 
quantifying the necessary soil physical properties to allow for the 
calculation of FAW can be costly and time consuming. Our find-
ings show that in the context of identifying agricultural drought, 
simpler measures of soil moisture like MP and SWS may suffice.

Our standardized indices related similarly to crop-yield 
anomaly as other soil moisture based drought indices 

(Narasimhan and Srinivasan, 2005; Zhang et al., 2017), but 
they generally outperformed weather derived indices (Tian et 
al., 2018). In Texas, for example, correlation between weekly 
modeled soil moisture and wheat yield anomaly was as high 
as 0.81 at the watershed scale (Narasimhan and Srinivasan, 
2005). Similarly, when aggregated across Oklahoma, correlation 
between wheat yield anomaly and fractional water index (FWI) 
was 0.53 (Zhang et al., 2017). The FWI is a normalized measure 
of the sensor response for in situ soil moisture measured by the 
Oklahoma Mesonet. FWI has a range of 0 to 1 (Illston et al., 
2008), and is somewhat comparable to the non-standardized 
indices in our study. At the county level in Oklahoma, on the 
other hand, the median correlation between weather-derived 
drought indices and wheat ranged from 0.29 to 0.47 and for 
cotton it ranged from 0.30 to 0.44 (Tian et al., 2018). The 
higher correlations that we observed may result because grow-
ing conditions are more accurately represented by measured 
soil moisture than by weather-derived indices. It is also possible 
that the critical period of soil moisture stress in crops is better 
captured by daily soil moisture, as we used in our study, than 
indices aggregated at the monthly time step

It is clear from our analyses that standardization is essential for 
a drought index to be comparable across time and space. At the 
regional level, standardization by calculating anomalies or using 
statistical techniques removed seasonality from soil moisture time 
series and improved the relationship between soil moisture and 
crop-yield anomaly. The statistically standardized indices had the 
benefit of a data distribution that was consistent throughout the 

Fig.	6.	Correlograms	for	soil	water	storage	(SWS),	SWS-anomaly,	and	standardized	SWS	(SSWS)	for	the	Marena	Oklahoma	Mesonet	
station	near	Stillwater,	Oklahoma	from	2000	to	2016	and	the	Reese	Center	West	Texas	Mesonet	station	near	Lubbock,	Texas	from	2002	
to	2016.	Dashed	lines	are	included	at	±0.2	as	an	estimate	of	the	limit	of	practically	meaningful	autocorrelation.	SWS	at	Marena	shows	
strong	seasonality,	with	autocorrelation	that	persists	for	at	least	5	yr	(a),	but	seasonality	is	removed	by	calculating	SWS-anomaly	(c)	or	
SSWS	(e).	None	of	the	indices	shows	seasonality	at	Reese	Center	(b,	d,	and	f).
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year, and they showed slightly better relationships with crop-yield 
anomaly than anomalies in some cases. Therefore, at the regional 
level, agricultural drought assessments based on statistically stan-
dardized soil water storage (SSWS) may be preferred.

The strength of the soil moisture-yield-anomaly relationship 
at the regional scale was somewhat lower than at the county 
level, highlighting the influence of local conditions on the soil 
moisture-yield anomaly relationships. Average correlation across 
standardized indices at the regional level was of 0.49, 0.69, and 
0.69 for wheat, hay, and cotton, respectively, whereas at the 
county level, the average correlation for wheat was 0.63, average 
correlation for hay was 0.76, and that for cotton was 0.76. This 
poorer regional-level performance underscores the importance of 
considering local conditions when translating soil moisture data 
into actionable information. This point can be further clarified 
by way of example. The day of year when the soil moisture-wheat 
yield anomaly relationship was greatest was similar for Payne 
County Oklahoma (21 March) and Lubbock County Texas 

(18 March), the southwestern and northeastern eastern edges of 
the wheat production area in our study. But the duration over 
which soil moisture was significantly related to yield anomaly 
differed markedly for these counties, with a significant soil 
moisture-wheat yield anomaly relationship in Payne county from 
7 February through 27 March and in Lubbock county from 
12 March through 12 June. The period of significance in Payne 
County includes the critical time for wheat grazing termination 
and spring nitrogen application in that area, facts that were clear 
only after considering the data at a smaller spatial scale.

CONCLUSION
A wealth of in situ soil moisture data exists throughout the 

United States and in a growing number of nations around the 
world, but key challenges currently limit the use of these data 
for agricultural drought monitoring and prevent translation of 
the data into actionable information for producers. Using in situ 
soil moisture data from the Oklahoma and West Texas Mesonet 

Fig.	7.	Correlation	coefficients	(r)	between	drought	indices	and	wheat,	hay,	or	cotton	yield	anomaly.	County-level	data	for	counties	with	
significant	soil	moisture-crop	yield	anomaly	relationships	were	combined	into	a	single	correlation	analysis	for	each	drought	index-crop	
combination.	Oklahoma	data	were	from	2000	to	2016	and	Texas	Panhandle	data	were	from	2002	to	2016.	Drought	indices	included	
matric	potential	(MP),	soil	water	storage	(SWS),	and	fraction	of	available	water	capacity	(FAW),	and	r	is	shown	for	index	values,	
anomalies,	and	statistically	standardized	indices.	Error	bars	are	90%	confidence	intervals,	and	columns	with	different	lowercase	letters	
are	significantly	different	at	P	≤	0.10.	Anomaly	and	statistically	standardized	indices	were	generally	more	strongly	related	to	crop-yield	
anomaly	than	index	values.
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systems, we found that crop-yield anomaly was positively corre-
lated with soil moisture for each index and crop that we studied, 
a finding that highlights the potential value of the many exist-
ing in situ soil moisture data sets for agricultural drought moni-
toring. The significant soil moisture-yield anomaly relationships 
occurred despite the fact that soil moisture data were collected 
under natural vegetation, and may therefore not reflect crop-
specific soil moisture conditions during parts of the year. These 
differing land cover conditions may partially explain the weaker 
soil moisture-yield relationships observed for winter wheat than 
for other crops. We also found that the formulation of the index 
was relatively unimportant, with matric potential (MP), soil 
water storage (SWS), and fraction of available water capacity 
(FAW) relating similarly to crop-yield anomaly at each spatial 
scale that we considered. This important result is evidence 
that, in the context of agricultural drought monitoring, exist-
ing data sets can be important drought monitoring tools with 
little further resource input, that is, without extensive sampling 
campaigns to determine soil properties at the monitoring sta-
tions. To maximize temporal and spatial comparability, how-
ever, it was essential that drought indices be standardized, either 
by calculating data anomalies or using statistical techniques. 
Standardization not only removed seasonality from soil mois-
ture time series, but also improved index comparability across 
different climates.

We recommend SWS-anomaly as a particularly promising 
drought index because, in addition to the previously mentioned 
benefits of standardization, SWS-anomaly has units that are 
immediately recognizable to users (i.e., mm or inches of soil mois-
ture above or below average). The fact that these units are directly 
comparable with precipitation units is a further advantage that 
may promote correct thinking about the soil water balance and 
the amount of precipitation needed to alleviate agricultural 
drought. Because county-level soil moisture-yield anomaly rela-
tionships were stronger than those at the regional level, we con-
clude that drought assessments derived from local data may more 
precisely translate soil moisture data into actionable information, 
but at the cost of some added complexity. Regional or county-
specific drought assessments informed by soil moisture-based 
drought indices could form the foundation of powerful decision 
support tools for wheat, cotton, and hay producers in the south-
ern Great Plains, and our methods are a framework by which 
similar indices can be evaluated and applied across the world.
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