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Abstract Reproducibility is a foundational principle in scientific research. Yet in computational hydrology
the code and data that actually produces published results are not regularly made available, inhibiting the
ability of the community to reproduce and verify previous findings. In order to overcome this problem we rec-
ommend that reuseable code and formal workflows, which unambiguously reproduce published scientific
results, are made available for the community alongside data, so that we can verify previous findings, and
build directly from previous work. In cases where reproducing large-scale hydrologic studies is computational-
ly very expensive and time-consuming, new processes are required to ensure scientific rigor. Such changes
will strongly improve the transparency of hydrological research, and thus provide a more credible foundation
for scientific advancement and policy support.

1. Introduction

Upon observing order of magnitude differences in Darcy-Weisbach Friction Factors estimated from hillslope
surface properties in two previous studies [Weltz et al., 1992; Abrahams et al., 1994], Parsons et al. [1994] con-
ducted additional experiments to identify factors controlling hillslope overland flow in semiarid environ-
ments, and identified that the experimental setup was the main factor controlling the difference between
the previous experimental results. While exact reproducibility is impossible in open hydrological systems,
attempting to reproduce the main scientific finding within an acceptable margin of error is a core principle
of scientific research [Popper, 1959]. As illustrated, independent observation helps to verify the legitimacy of
individual findings. In turn, this helps us to build upon sound observations so that we can evolve hypothe-
ses (and models) of how catchments function [McGlynn et al., 2002], and move them from specific circum-
stances to more general theory [Wagener et al., 2007].

As in Parsons et al. [1994] attempts at reproducibility have failed in a number of disciplines, leading to
increased focus on the topic in the broader scientific literature [Begley and Ellis, 2012; Prinz et al., 2011;
Ioannidis et al., 2001; Nosek, 2012]. Such failures have occurred not just because of differences in experimen-
tal setup, but because of scientific misconduct [Yong, 2012; Collins and Tabak, 2014; Fang et al., 2012], poor
application of statistics to achieve apparent significant results [Ioannidis, 2005; Hutton, 2014], and important-
ly, insufficient reporting of methodologies and data quality in journals to enable reproducibility to be
assessed by the community. An oft-cited underlying reason for such failures is the present reward system in
scientific publication, which prioritizes the publication of innovative, and seemingly statistically significant
results over the publication of both null results [Franco et al., 2014; Jennions and Møller, 2002; cf Freer et al.,
2003], and reproduced experiments. Such a system provides few incentives to adopt open science practices
that support and enable verification [Nosek et al., 2015].

The prominence of computational research across scientific disciplines—from big data analysis in geno-
mic research to computational modeling in climate science—has brought increased focus on the repro-
ducibility issue. This is because the full code and workflow used to produce published scientific findings is
typically not made available, thus inhibiting attempts to verify the provenance of published results [Buck-
heit and Donoho, 1995; Mesirov, 2010]. Given the extent to which this lack of transparency is considered a
problem for reproducibility more broadly in the scientific literature [Donoho et al., 2009], to what extent is
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reproducibility, or a lack thereof, also a problem in computational hydrology? Computational analysis has
grown rapidly in hydrology over the past 30 years, transforming the process of scientific discovery. While
code is most obviously used for hydrological modeling [e.g., Clark et al., 2008; Wrede et al., 2014; Duan
et al., 2006], some form of code is used to produce the vast majority of hydrological research papers, from
data processing and quality analysis [Teegavarapu, 2009; Mcmillan et al., 2012; Coxon et al., 2015], region-
alization and large-scale statistical analysis across catchments [Bl€oschl et al., 2013; Berghuijs et al., 2016],
all the way to figure preparation. However, as in other disciplines, the full code that produces presented
results is typically not made available alongside the publication, which inhibits attempts to reproduce
published findings.

In order to advance scientific progress in hydrology, reproducibility is required in computational hydrology
for several key reasons. First, the reliability of scientific computer code is often unclear. From our own expe-
rience, it is often very difficult to spot errors unless they manifest themselves in very obvious errors in model
outputs. Thus, code needs to be transparent to allow the legitimacy of published results to be verified. Sec-
ond, the complexity of many hydrologic models and data analysis codes used today makes it simply infeasi-
ble to report all settings that can be adjusted (e.g., initial conditions and parameters) in publications—a
point recognized recently in a joint editorial published in five hydrology journals [Bl€oschl et al., 2014]. Trans-
parency across hydrology is especially important given research builds on previous research. For example,
being able to evaluate how ‘‘tidied up’’ data sets have been created by explicitly showing all of the assump-
tions made will lead to benefits in interpreting where and why subsequent models that are built upon such
data sets fail. Finally, the complexity and diversity of catchment systems means that we need to be able to
reproduce exact methodologies applied in specific settings more broadly across a range of catchment envi-
ronments, so that we can robustly evaluate competing hypotheses of hydrologic behavior across scales and
locations [Clark et al., 2016]. Our current inability to achieve this hinders both the ability of the broader com-
munity to learn from, and build on, previous work, and importantly, verify previous findings. So what mate-
rial should be provided, and therefore what is required to reproduce computational hydrology?

The necessary information that leads to and therefore documents the provenance of the final research
paper has been termed the research compendium [Gentleman and Lang, 2007]. In the context of computa-
tional hydrology, this includes the original data used, all analysis/modeling code, and the workflow that ties
together the code and data to produce the published results. Although these components are not routinely
published alongside journal articles, current practices in hydrology do facilitate reproducibility to varying
extents. For example, initiatives are relatively well developed in hydrology for opening up and sharing data
from individual catchments and cross-catchment data sets [McKee and Druliner, 1998; Renard et al., 2008;
Kirby et al., 1991; Newman et al., 2015; Duan et al., 2006], including (quite recently) the development of infra-
structures and standards for sharing open water data [Emmett et al., 2014; Leonard and Duffy, 2013;
Tarboton et al., 2009; Tarboton et al., 2014]. In addition, different code packages have been made available
by developers. Prominent examples include the hydrologic models such as Topmodel [Beven and Kirkby,
1979], VIC [Wood et al., 1992], FUSE [Clark et al., 2008], HYPE [Lindstr€om et al., 2010], open-source groundwa-
ter models including MODFLOW [Harbaugh, 2005] and PFLOTRAN, and codes linked to modeling, including
optimization/uncertainty algorithms such as SCE [Duan et al., 1993], SCEM [Vrugt et al., 2003] or GLUE [Beven
and Binley, 1992]. By being made open, such code has helped spread new ideas and concepts to advance
hydrology, and made reproducing each-others’ work easier. However, while sharing data and code are
important first steps, sharing alone does not provide the critical detail on implementation contained within
a workflow that is required to reproduce published results.

2. Towards Reproducible Computational Hydrology

We argue that in order to advance and make more robust the process of knowledge creation and hypothe-
sis testing within the computational hydrological community, we need to adopt common standards and
infrastructures to: (1) make code readable and reuseable; (2) create well-documented workflows that com-
bine reuseable code together with data to enable published scientific findings to be reproduced; (3) make
code and workflows available and easy to find through the use of code repositories and creation of code
metadata; (4) use unique persistent identifiers (e.g., DOIs) to reference reuseable code and workflows, there-
by clearly showing the provenance of published scientific findings (Figure 1).
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The first step toward more open, reproducible science is to adopt common standards that facilitate code
readability and reuse. As most researchers in hydrology are scientists first, programmers second, setting
high standards for code reuse may be counterproductive to broad adoption of reproducible practices. Yet
long, poorly documented scripts are not reuseable, and certainly difficult to reproduce if their ability to do
the intended job cannot be verified. As a minimum standard, we therefore recommend that code should
come with an example workflow, as commonly adopted [e.g., Pianosi et al., 2015], and where possible, also
packaged with input and output data to provide a means to ensure correct implementation of a method
prior to application. Implementing code correctly however is not enough to make it reuseable; sufficient
information is required to understand what the code does, and to be reproducible, whether it does this cor-
rectly. Therefore, code should be modularized into functions and classes that may be reuseable by the wid-
er community, with comments that do not repeat the code, but explain at a higher level of abstraction
what individual blocks within modular code are trying to do [McConnell, 2004]. Such readable code allows
the broader community to verify code intent.

Figure 1. Schematic figure of steps required leading to reproducible and reuseable hydrological publications.
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The second key requirement to reproduce published scientific results is a well-documented workflow, or
protocol that combines reuseable code together with data to enable published scientific findings to be
reproduced. Such workflows may take the form of code scripts themselves [e.g., Ceola et al., 2015; Pianosi
et al., 2015], or when multiple programming environments/research partners are involved, schematic work-
flows that illustrate how individual scripts and intermediary results lead to the generation of the final, pub-
lished paper. Regardless of the specific structure, or software/workflow management system used, we
argue that the key requirement of such a workflow is that it clearly specifies all potential degrees of free-
dom, and therefore unambiguously ties together the component reuseable code and data to document the
provenance of the published scientific results. For example, Ceola et al. [2015] identified the importance of
a well-documented protocol to ensure correct execution, and avoid ambiguity in the interpretation of
results, when five research groups attempted to reproduce the same hydrological model calibration
experiment.

Third, code and code metadata need to be made open and available to allow others to reuse and reproduce
scientific results. Numerous code and resource repositories exist to facilitate sharing of research outputs,
such as Github, Zenodo, Figshare, the EU SWITCH-ON Virtual Water-Science Laboratory (www.water-switch-
on.eu), and the US CUAHSI initiative Hydroshare, specifically designed for sharing hydrological data and
models to serve the hydrological community [Horsburgh et al., 2015; Tarboton et al., 2014]. The development
of metadata standards for water data is a key factor that has allowed data to be found, correctly interpreted
and reused by the broader community [Maidment, 2008; Taylor, 2012]. In the same vein, we argue that in
order to facilitate first the discovery, and second the reuse of disparate hydrological code across the web,
the development and adoption of similar metadata standards are required. Gil et al. [2015], for example,
have developed OntoSoft for the geoscience community; a metadata repository and ontology to describe
software metadata. The development of code metadata, and consistent use of such a repository, while
more challenging than development of metadata standards for data, will greatly facilitate the process of
code identification and reuse, and through broad community engagement, lead the way toward the devel-
opment of more formal ontologies for specific components of hydrological software, which will greatly
improve model interoperability [see Elag and Goodall, 2013].

Finally, we recommend that reuseable code and reproducible code (workflows) need to be cited in research
papers using unique persistent identifiers (e.g., DOIs) to clearly link published results to the code used to
generate them, thereby documenting their provenance [Horsburgh et al., 2015]. Such DOIs should be spe-
cific to the exact code version used in generating the results. Appropriate citation in methodologies and
results sections of papers will allow others to both reuse code and reproduce experimental results. While
code may be included as supporting information in research articles, persistent links to repositories provide
an open access approach that exploits existing infrastructures specifically designed for sharing research out-
puts. Furthermore, such an approach demands little from publishers other than adopting standards for
code citation.

3. Changing the Research Culture

Making one’s code reuseable in the first instance, then reproducible, undoubtedly requires extra effort. This
is notwithstanding the effort to reproduce someone else’s work, with little reward in the current system of
publication to reproduce, and therefore validate, either positively or negatively, a prior result. Thus, it is a
perfectly valid question to ask: why go to the effort? Within the current system of academic reward through
citation [Koutsoyiannis et al., 2016], making code available and reuseable reduces the barriers to the adop-
tion of developed methods, which as considered above, is more likely to lead to further citation and greater
impact in the community. Furthermore, making code reuseable is beneficial for our own work efficiency
[Donoho et al., 2009]. Across hydrology, much duplicated code is likely to be written for common tasks that
are not deemed worthy of publication. However, if open, reuseable practices are adopted by the broader
community to make all code open and citable, this would reduce the amount of individual code to be writ-
ten, and lead to improved efficiency at a community level. In addition, this would allow researchers to gain
credit for all of their research outputs, not simply the final publication. The key reason we recommend mak-
ing code reuseable, however, is that this would allow a process of natural selection to occur at the commu-
nity level, where freely chosen code that is assessed to be most fit-for-puropse through reuse and unit-
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testing can form the individual building blocks of larger ‘‘off-spring’’ scripts/workflows. Verification of these
individual code building blocks, potentially by many users in the community, means assessing the reprodu-
cibilty and provenance of derived results becomes much easier.

As has guided our recommendations we make above, there is wide recognition that gradual steps are
required to change a deeply engrained research culture that does not currently require reproducibility [Bailey
et al., 2016; Peng, 2011; Koutsoyiannis et al., 2016]. A key step to change this culture is to ensure that computa-
tional science training (e.g., http://software-carpentry.org) is properly embedded within hydrological science
curriculums, so that future generations of hydrologists have the skills to build readable, version controlled and
unit-tested software [McConnell, 2004], allowing them to engage more fully in an open scientific community
by reproducing and reusing each other’s research outputs. Thus, instead of seeing the need to make their
work reproducibile as an inconvenient after-thought, it will be an integral part of their research process.
Engaging with advances in the related disciplines of computational science and hydroinformatics through
such training will help ensure future hydrologists, and in turn the science they produce, benefits from modern
computational methods. To facilitate this training, Data and Modeling Driven Cybereducation (DMDC) meth-
ods [Merwade and Ruddell, 2012], and educational web-based tools [e.g., Wagener and McIntyre, 2007; Habib
et al., 2012], need to come to the forefront and ultimately form part of a holistic approach to hydrology educa-
tion that considers future challenges and opportunities for hydrologists [Sanchez et al., 2016].

Journals and funding bodies clearly have a role to play in facilitating the change to more open science.
Some publishers and hydrological journals are revising their policies to encourage authors to make data
and computer codes available to readers [Bl€oschl et al., 2014], notably Vadose Zone Journal with the launch
of a reproducible research program, which will verify that code is technically sound and can be used to
reproduce the key results of the paper [Skaggs et al., 2015]. AGU Publications also encourages references to
data and software to find source material, facilitating transparency and recognition [Hanson and Van Der
Hilst, 2014]. Other journals go further. Science, for example, states that all codes used in creation and analysis
of data must be available to readers [Sciencemag.org, 2016]. Nosek et al. [2015] have developed guidelines
to facilitate gradual adoption of open practices by journals. Funding guidelines for science funding bodies
in the U.S. (NSF) and UK (NERC) have moved toward more open science practices, and both require that
data and other research materials are made open [NERC, 2016; NSF, 2016]. NERCs open data policy, for
example, is designed to ‘‘support the integrity, transparency, and openness of the research it supports.’’
However, despite the intent, these guidelines currently fall short of software sharing, which is only encour-
aged by the NSF. Finally, changes such as the replacement of the ‘‘Publications’’ section in the NSF biosketch
format for grant applications with a ‘‘Products’’ section to recongize other research outputs like software
provides important additional incentives for open science practice.

While reproducibility is more achievable in smaller-scale studies, there are key technical challenges to
address in making computational workflows in hydrology reproducible as the scale of application increases
in terms of modeling domain, data, and computational requirements, large legacy codes authored by large,
diverse scientific groups, and large user communities. Modeling large domains with complex models, or
many catchments with complex algorithms are increasingly common [e.g., Kollat et al., 2012; Pechlivanidis
and Arheimer, 2015], yet such studies are computationally demanding, and one cannot currently expect
these to be reproduced given the resources it would require, in particular by reviewers. We therefore need
to improve our ability to reproduce larger-scale studies, and when not possible, identify formal processes
that nonetheless ensure that such studies are scientifically verifiable.

Ongoing research in hydroinformatics is attempting to tackle these reproducibility issues, including devel-
opment of workflows for large-scale data processing [Essawy et al., 2016; Billah et al., 2016], and the work
undertaken over the past decade to develop the open source model RAPID [David et al., 2016]. In addition,
formal processes like benchmark comparison tests [e.g., Maxwell et al., 2014] may help to provide confi-
dence in key complex codes that are difficult to transfer between research groups. Other scientific com-
munties have moved toward sharing complex codes between many research groups, including modelling
projects in meteorology (HIRLAM) and oceanography (NEMO), which is beneficial for code development.
The idea to establish such a community model has been discussed in hydrological sciences [Weiler and
Beven, 2015]. Improved training in computational science, and open science practices considered above,
will help in building large and inter-operable model codes across research groups, which can help in provid-
ing independent verification of model components.
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In a competitive research climate, funding bodies in the UK and Europe are increasingly emphasising the
importance of impact generated from science spending. Coupled with events such as the droughts in
California, and persistent flooding in the UK over recent years, this change in emphasis highlights the
increasing role that hydrological scientists have to play in informing public policy and public understanding
of hydrological risks. The need for openness and transparency in scientific research was highlighted by the
so-called climategate scandal, because of the potential loss of trust in climate scientists that resulted
[Leiserowitz et al., 2012]. Thus, to play a credible role in informing public policy, trust in the hydrological sci-
ence community is essential, and is built on transparency. Transparent, reproducible computational hydrol-
ogy will then provide a solid foundation to address the more difficult problem of inference and
reproducibility in open systems to forward scientific understanding; progress in which requires both innno-
vation and verification.

4. Conclusions

Reproducibility is a foundational principle in scientific research. Yet in hydrology, the code and data that
actually produces published results are not regularly made available, which strongly inhibits reproducibility.
This situation hinders both the ability of the broader community to learn from, and build on, previous work,
and importantly, verify previous findings. To help move toward reproducible computational hydrology, we
recommend the following:

1. code needs to be made readable and reuseable for the community;
2. workflows that tie together data and reuseable code need to be created to document, unambiguously,

the full provenance of published scientific results;
3. reuseable code and workflows need to be made available and easy to find through consistent use of

repositories and creation of code metadata;
4. reuseable and reproducible code needs to be cited in publications using unique persistent identifiers

(e.g., DOIs) to clearly show the provenance of published scientific findings; and
5. new procedures need to be developed that ensure scientific rigor in circumstances where reproducing

large-scale studies is computationally very expensive and time consuming.

Making code reuseable is more likely to lead to citation and reuse of an individual’s work, which provides
an incentive within the current publication system that can be built upon to move toward reproducibility,
and gain efficiencies across the hydrology community to advance scientific understanding across catch-
ments. Ultimately however, a collective will is required across the community to adequately address the
larger technical, scientific, and cultural challenges that need to be solved, including real buy-in from jour-
nals and funding bodies, and training of young scientists to adopt reproducible practices. To allow hydrolo-
gy to play a credible role in informing public policy, trust in the hydrological science community is essential,
and is built on the transparency that will result. Our view is that reproducible computational hydrology will
provide this transparency.
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