

Soil Moisture Estimation Using Active DTS at MOISST Site

June 4, 2014

Chadi Sayde, Daniel Moreno, John Selker

Department of Biological and Ecological Engineering Oregon State University, USA

Measuring Temperature with DTS

Optical fiber

Fiber diameter 0.9 mm Black and white jackets

Measuring soil moisture content

Heat Pulse Interpretation: The Integral Method

$$T_{cum} = \int_{t_0}^{t_j} \Delta T \, dt$$

- \underline{T}_{cum} is the cumulative temperature increase
- \underline{t}_0 is the time to start of a heat pulse
- \underline{t}_{i} is the total time of integration
- ΔT is the temperature increase over ambient temperature.

Calibration Curve

Calibration curve relating the degree of saturation (*S*) to T_{cum} normalized by its value at saturation

Ever inseitsurer fromtentneatimatien due santhale To leverent nortent entre aller column using KD2 probe Interpretation of satellite soil moisture products with ultra-high resolution fiber optic and cosmic ray ground-based measurements.

Funding agency: NASA
 Location: Stillwater, OK
 Objectives:

 Better understanding of spatio-temporal variation of soil water content

- Calibration / Validation remote sensing
 data
- Downscaling remote sensing data

Fiber Optics Cable Path

Fiber Optics Cable Path

Precipitation recorded at the site and Soil Water Contents measured at Stations 1H and 2H

Tcum vs. soil water content measured at stations 1H and 2H in August, 2013

Spatial Variability of Soil Thermal properties

Precipitation recorded at the site and Soil Water Contents measured at Stations 1H and 2H

June 1, 2013 – Tcum from 4 min heat pulse

Saturated soil after heavy rainfall

Future work: Increasing Calibration Accuracy

Generate distributed calibration curves:

- Thermal response curve generated from non disturbed samples
- Strategic detailed surveying of soil water content and soil thermal properties
- Calibration curve could be produced by few measured T_{cum} - θ couples per location
- Vegetation and topography indices

Ultra High Resolution LIDAR mapping of the site

July 20-25:

- 1X1 mile to be mapped
- 3 LIDAR types: 2 copters, ground
- Horizontal resolution <6cm
- Color aerial mosaic and orthophotos <2.5 cm
- Near infrared and NDVI

Products:

- Surface micro-topography
- Canopy height, above ground biomass
- Vegetation type?

> Active DTS Soil Moisture product available in the summer

- Distributed calibration
- Dynamic calibration: Increased accuracy with more data integrated
- High resolution LIDAR micro-topography and vegetation height maps:
 - Improving the accuracy of DTS products
 - Effects of micro-topography on Hydrologic processes in the field
 - Upscaling DTS soil moisture

Thank You!

