The Soil Moisture Active Passive Marena Oklahoma In Situ Sensor Testbed (SMAP-MOISST): Design and Initial Results

Michael H. Cosh¹, Tyson E. Ochsner², Lynn McKee¹, Jingnuo Dong², Jeffrey Basara³, Steven R. Evett⁴, Christine Hatch⁵, Eric Small⁶, Susan Steele-Dunne⁷, Marek Zreda⁸

¹USDA-ARS-Hydrology and Remote Sensing Laboratory, Beltsville, MD
²Dept. of Plant and Soil Sciences, Oklahoma State University
³School of Meteorology, Oklahoma Climatological Survey, University of Oklahoma
⁴USDA-ARS-Crop Production Research Laboratory
⁵Department of Geosciences, University of Massachusetts-Amherst, Amherst, MA
⁶Department of Geological Sciences, University of Colorado-Boulder
⁷Department of Civil Engineering and Geosciences, Delft University of Technology
⁸Department of Hydrology and Water Resources, University of Arizona

SMAP Marena Oklahoma In Situ Sensor Testbed Site Design

- Four Base Installations
- Common depths of 5, 10, 20, 50, 100 cm, with some sampling at 2.5 cm with Hydra.
- Base station sensors
 - Stevens Water Hydra Probes (6)
 - Delta-T Theta Probes (5)
 - Decagon EC-TM probes (5)
 - Sentek EnviroSMART Capacitance Probes (4)
 - Campbell CS615/CS616 TDRs (5)
 - CS 229-L heat dissipation sensors (OK Mesonet) (5)
 - Acclima Sensor (5)

Site A	Site B	Site C	Site D
Base	Base	Base	Base
GPS	ASSH	GPS	GPS
COSMOS	Passive DTS		CRN
ASSH			
TDR systems			
Flux System			

SMAP Marena Oklahoma In Situ Sensor Testbed Installation

• Installation in May 2010

- Monthly Sampling
 - Vegetation Collection
 - Gravimetric Sampling
 - Theta Probe Sampling
- Intensive Observations
 - High Density Sampling
 - Soil Profiles

- Project Planning begins October 2009
- Installation and deployments
 - Base Stations installed May 2010
 - GPS installed in June 2010
 - COSMOS installed July 2010
 - Passive DTS installed October 2011
 - SMAPVEX11, June 2011, PALS flights/COSMOS rover.
 - Flux Tower installed October 2011
 - Burn Study Winter 2012
 - Additional UAVSAR flights October 2012
 - AirMoss Validation October 2012

SMAP Marena Oklahoma In Situ Sensor Testbed Sensor to Sensor Average Comparison

SMAP Marena Oklahoma In Situ Sensor Testbed Sensor Calibration

Sensor	Factory Listed Accuracy	Bias w/ factory calibratio n	RMSE factory calibration	RMSE soil specific calibration	Failure Rate over 3 years
Theta	0.01	0.014	0.030	0.028	0 out of 20
Hydra	0.01-0.03	0.020	0.040	0.032	0 out of 24
ECTM	0.03	0.076	0.081	0.036	8 out of 20
CS-616	0.025	-0.023	0.073	0.063	1 out of 20
Trime	0.01-0.03	0.005	0.042	0.023	0 out of 6
Acclima	0.01	0.074	0.080	0.025	9 out of 20
CS-229	N/A	-	-	-	2 out of 20*
Enviro-	N/A	-	-	-	4 out 15**
SMART	-				

Comparison of the three CRN 5 cm installations which are in close proximity

	5 cm	Site 1	Site 2	Site 3
RMSD	Site 1	0	0.054	0.028
	Site 2		0	0.039
	Site 3			0
r	Site 1	1	0.855	0.964
	Site 2		1	0.922
	Site 3			1

SMAP Marena Oklahoma In Situ Sensor Testbed Sites A-D Hydras at 5 cm depth

SMAP Marena Oklahoma In Situ Sensor Testbed CDFs of Site Averages by Sensor at 5 cm

SMAP Marena Oklahoma In Situ Sensor Testbed Sensor to Sensor Average Comparison

SMAP Marena Oklahoma In Situ Sensor Testbed Sensor to Sensor Average Comparison

	UnScaled				Scaled			
Sensor	2.5 cm	5 cm	10 cm	Variable Depth	2.5 cm	5 cm	10 cm	Variable Depth
CS-616		0.110	0.140			0.036	0.046	
Hydra	0.048	0.062	0.079		0.021	0.035	0.047	
Theta		0.058	0.063			0.030	0.039	
Acclima		0.027	0.053			0.030	0.047	
Sentek			0.178				0.064	
ECTM		0.047	0.055			0.032	0.043	
Trime	0.083	0.085	0.110		0.026	0.032	0.042	
CS229		0.089	0.091			0.038	0.044	
GPSR				0.050				0.036
COSMOS				0.048				0.035

- Installation practices and procedures should be standardized
- Calibration is critical for all sensors.
- Scaling (representativeness) also critical for all sensors.
- Raingage records are important for erroneous readings and troubleshooting.
- Accuracies of < 0.04 m³/m³ are achievable with a variety of sensors to field scales.
- Mixing of sensors within or between domains will cause variation at the fringes of the moisture conditions.

Install/Replace Acclima sensors

Install Campbell Scientific CS655/625

Perform temperature tests for Hydra sensors

Perform a study on portable soil moisture sensors

Continue with AIRMOSS cooperation

*BEAREX08 Transect Data Cosh et al., 2012