
Oklahoma's White Water

Oklahoma's Renewable Water Resources

Adapted from Falkenmark and Lannerstad (2005).


	Positive	
<u>Item</u>	effects?	Size (mm)
Precipitation: the renewable resource	+	?
Blue water: flow through the surface	+	?
water and groundwater systems		
Green water: transpiration through plants	+	?
White water: evaporation from the land		2
surface (excluding transpiration)	_	:

Precipitation

Best documented variable in the water budget

Oklahoma Mesonet

 National Weather Service Cooperative Observer Stations

<u>Item</u>	Effects?	Size (mm)
Precipitation: the renewable resource	+	34

Positive

Blue water: flow through the surface +

water and groundwater systems

Blue water

Calculated from USGS stream gage data

$$Runoff = \frac{Volume of \ water}{Area of \ watershed}$$

- Must correct for upstream inflows
 - Arkansas River
 - Cimmaron River
 - Canadian River
 - Red River

	Positive	
<u>Item</u>	Effects?	Size (in)
Precipitation: the renewable resource	+	34
Blue water: flow through the surface	+	7.7
water and groundwater systems		
Green water: transpiration through plants	+	?

Green water

Plant growth is proportional to transpiration

 $Plant\ biomass = Transpiration \times Efficiency$

Efficiency depends on plant species and vapor pressure deficit

 Central hypothesis: Biomass data can be used to effectively estimate transpiration.

		Area	Biomass	TE ¹	Transpi	ration	
		ha	kg x 10 ⁶	kg ha ⁻¹ mm ⁻¹	km ³	mm	in
Grasslands (not harves	sted)	8.58E+06	30563	20	15.28	178	7.0
Forests		2.98E+06			8.95	300	11.8
Winter wheat		1.73E+06	10585	32	3.33	192	7.6
Grass Hay		9.76E+05	3478	20	1.74	178	7.0
Winter wheat (not ha	rvested) ²	7.82E+05		32	1.50	192	7.6
Fallow or idle cropland	d	2.39E+05	0	0	0	0	0.0
Alfalfa		1.40E+05	1035	21	0.50	354	13.9
Sorghum		1.32E+05	997	50	0.20	152	6.0
Soybean		1.13E+05	541	33	0.17	147	5.8
Corn		8.79E+04	1786	66	0.27	310	12.2
Rye (not harvested) ²		8.46E+04		32	0.07	83	3.3
Cotton		7.21E+04	71 ³	4.4	0.16	222	8.7
Rye		2.66E+04	70	32	0.02	83	3.3
Totals		1.59E+07			32.2	202	7.9
¹ TE defined as biomas	ss produced	d per unit of	transpirati	on			
² Transpiration for unharvested (grazed) crop scaled to harvested crop							
³ Cotton mass and TE	are based o	on lint yield i	rather than	biomass			
⁴ Forest mass and TE a	are based o	n stem grov	vth rather t	han biomass			

	Positive	
<u>Item</u>	Effects?	Size (in)
Precipitation: the renewable resource	+	34
Blue water: flow through the surface	+	7.6
water and groundwater systems		
Green water: transpiration through plants	+	7.9
White water: evaporation from the land		2
surface (excluding transpiration)	_	;

White water

 Evaporation is the rest of the water budget (approximately).

$$Evaporation = Precipitation - Runoff$$

- $Transpiration$

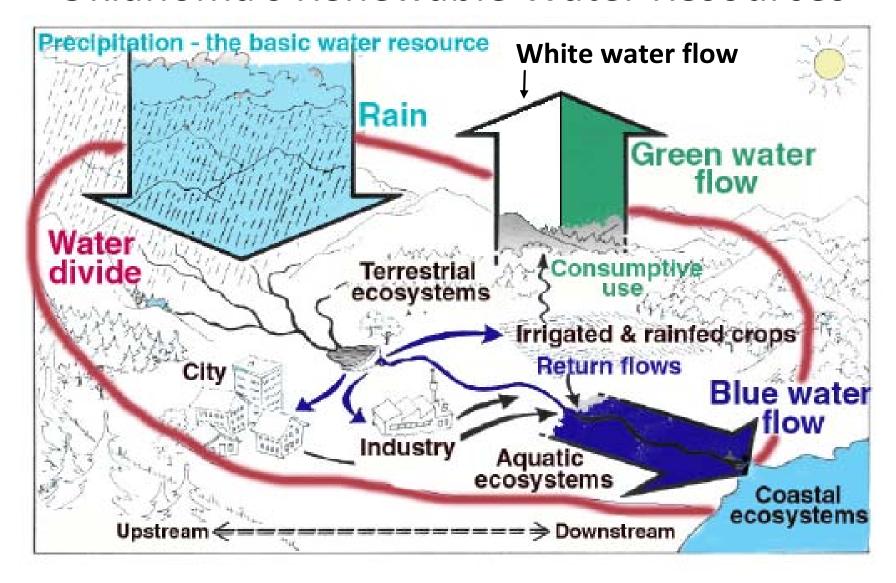
- Neglects fluctuating storage in soil, groundwater, and reservoirs
- Best applied for annual or longer time scale

	Positive	
<u>Item</u>	Effects?	Size (in)
Precipitation: the renewable resource	+	34
Blue water: flow through the surface	+	7.6
water and groundwater systems		
Green water: transpiration through plants	+	7.9
White water: evaporation from the land		10 F
surface (excluding transpiration)	_	18.5

Relevance

Economy

- Crop production valued at \$1 billion/yr
- 10% shift from white water would increase green water by 23%
- Worth approximately \$230 million/yr in crop production alone


Ecosystems

- 10% shift from white water would increase blue water resources by 24%
- Worth?

Next steps

- Discover the factors which control the partitioning between blue, green, and white water
 - what drives the spatial variability?
 - what drives the temporal variability?
 - what are the connections with land use?
- Develop land management practices to reduce white water flows while increasing green and/or blue water flows

Oklahoma's Renewable Water Resources

Adapted from Falkenmark and Lannerstad (2005).